172 resultados para Chronic exposure
Resumo:
Sun exposure in childhood is I of the risk factors for developing skin cancer, yet little is known about levels of exposure at this age. This is particularly important in countries with high levels of ultraviolet radiation. (UVR) such as Australia. Among 49 children 3 to 5 years of age attending child care centers, UVR exposure was studied under 4 conditions in a repeated measures design; sunny days, cloudy days, teacher's instruction to stay in the shade, and a health professionals instruction to apply sunscreen. Three different data collection methods were employed: (a) completion of questionnaire or diary by parents and researcher, (b) polysulphone dosimeter readings, and (c) observational audits (video recording). Results of this study indicated that more than half the children had been sunburnt (pink or red) and more than a third had experienced painful sunburn (sore or tender) in the last summer. Most wore short sleeve shirts, short skirts or shorts and cap, that do not provide optimal levels of skin protection. However, sunscreen was applied to all exposed parts before the children went out to the playground. Over the period of I hr (9-10 a.m.) the average amount of time children spent in full sun was 22 min. On sunny days there was more variation across children in the amount of sun exposure received. While the potential amount of UVR exposure for young children during the hour they were outside on a sunny day was 1.45 MED (Minimum Erythemal Dose), they received on average 0.35 MED, which is an insufficient amount to result in an erythemal response on fair skin even without the use of sunscreen.
Resumo:
Background: Human neuronal protein (hNP22) is a gene with elevated messenger RNA expression in the prefrontal cortex of the human alcoholic brain. hNP22 has high homology with a rat protein (rNP22). These proteins also share homology with a number of cytoskeleton-interacting proteins. Methods: A rabbit polyclonal antibody to an 18-amino acid epitope was produced for use in Western and immunohistochemical analysis. Samples from the human frontal and motor cortices were used for Western blots (n = 10), whereas a different group of frontal cortex and hippocampal samples were obtained for immunohistochemistry (n = 12). Results: The hNP22 antibody detected a single protein in both rat and human brain. Western blots revealed a significant increase in hNP22 protein levels in the frontal cortex but not the motor cortex of alcoholic cases. Immunohistochemical studies confirmed the increased hNP22 protein expression in all cortical layers. This is consistent with results previously obtained using Northern analysis. Immunohistochemical analysis also revealed a significant increase of hNP22 immunoreactivity in the CA3 and CA4 but not other regions of the hippocampus. Conclusions: It is possible that this protein may play a role in the morphological or plastic changes observed after chronic alcohol exposure and withdrawal, either as a cytoskeleton-interacting protein or as a signaling molecule.
Resumo:
To identify why reconceptualization of the problem is difficult in chronic pain, this study aimed to evaluate whether (1) health professionals and patients can understand currently accurate information about the neurophysiology of pain and (2) health professionals accurately estimate the ability of patients to understand the neurophysiology of pain. Knowledge tests were completed by 276 patients with chronic pain and 288 professionals either before (untrained) or after (trained) education about the neurophysiology of pain. Professionals estimated typical patient performance on the test. Untrained participants performed poorly (mean +/- standard deviation, 55% +/- 19% and 29% +/- 12% for professionals and patients, respectively), compared to their trained counterparts (78% +/- 21% and 61% +/- 19%, respectively). The estimated patient score (46% +/- 18%) was less than the actual patient score (P < .005). The results suggest that professionals and patients can understand the neurophysiology of pain but professionals underestimate patients' ability to understand. The implications are that (1) a poor knowledge of currently accurate information about pain and (2) the underestimation of patients' ability to understand currently accurate information about pain represent barriers to reconceptualization of the problem in chronic pain within the clinical and lay arenas. (C) 2003 by the American Pain Society.
Resumo:
Background Smoking is a risk factor for several diseases and has been increasing in many developing countries. Our aim was to estimate global and regional mortality in 2000 caused by smoking, including an analysis of uncertainty. Methods Following the methods of Peto and colleagues, we used lung-cancer mortality as an indirect marker for accumulated smoking risk. Never-smoker lung-cancer mortality was estimated based on the household use of coal with poor ventilation. Relative risks were taken from the American Cancer Society Cancer Prevention Study, phase II, and the retrospective proportional mortality analysis of Liu and colleagues in China. Relative risks were corrected for confounding and extrapolation to other regions. Results We estimated that in 2000, 4.83 (uncertainty range 3.94-5.93) million premature deaths in the world were attributable to smoking; 2.41 (1.80-3.15) million in developing countries and 2.43 (2.13-2.78) million in industrialised countries. 3.84 million of these deaths were in men. The leading causes of death from smoking were cardiovascular diseases (1.69 million deaths), chronic obstructive pulmonary disease (0.97 million deaths), and lung cancer (0.85 million deaths). Interpretation Smoking was an important cause of global mortality in 2000. In view of the expected demographic and epidemiological transitions and current smoking patterns in the developing world, the health loss due to smoking will grow even larger unless effective interventions and policies that reduce smoking among men and prevent increases among women in developing countries are implemented.
Resumo:
Evaluation of patients for rehabilitation after musculoskeletal injury involves identifying, grading and assessing the injury and its impact on the patient's normal activities. Management is guided by a multidisciplinary team, comprising the patient, doctor and physical therapist, with other health professionals recruited as required. Parallel interventions involving the various team members are specified in a customised management plan. The key component of the plan is active mobilisation utilising strengthening, flexibility and endurance exercise programs. Passive physical treatments (heat, ice, and manual therapy), as well as drug therapy and psychological interventions, are used as adjunctive therapy. Biomechanical devices or techniques (eg, orthotic devices) may also be helpful. Coexisting conditions such as depression and drug dependence are treated at the same time as the injury. Effective team communication, simulated environmental testing and, for those employed, contact with the employer facilitate a staged return to normal living, sports and occupational activities.