184 resultados para recombinant alpha interferon
Resumo:
Keratinocytes expressing the human papillomavirus (HPV) type 16 E7 protein, as a transgene driven by the K14 promoter, form a murine model of HPV-mediated epithelial cancers in humans. Our previous studies have shown that K14E7 transgenic skin grafts onto syngeneic mice are not susceptible to immune destruction despite the demonstrated presence of a strong, systemic CTL response directed against the E7 protein. Consistent with this finding, we now show that cultured, E7 transgenic keratinocytes (KC) express comparable endogenous levels of E7 protein to a range of CTL-sensitive E7-expressing cell lines but are not susceptible to CTL-mediated lysis in vitro . E7 transgenic and non-transgenic KC are susceptible to conventional mechanisms of CTL-mediated lysis, including perforin and Fas/FasL interaction when an excess of exogenous peptide is provided. The concentration of exogenous peptide required to render a cell susceptible to lysis was similar between KC and other conventional CTL targets (e.g. EL-4), despite large differences in H-2D(b) expression at the cell surface. Furthermore, exposure of KC to IFN-gamma increased H-2D(b) expression, but did not substantially alter the exogenous peptide concentration required to sensitize cells for half maximal lysis. In contrast, the lytic sensitivity of transgenic KC expressing endogenous E7 is modestly improved by exposure to IFN-gamma. Thus, failure of CTL to eliminate KC expressing endogenous E7, and by inference squamous tumours expressing E7, may reflect the need for a sustained, local inflammatory environment during the immune effector phase.
Resumo:
The contribution of the UV component of sunlight to the development of skin cancer is widely acknowledged, although the molecular mechanisms that are disrupted by UV radiation (UVR) resulting in the loss of normal growth controls of the epidermal stem cell keratinocytes and melanocytes is still poorly understood. alpha-Melanocyte stimulating hormone (alpha-MSH), acting via its receptor MC1, has a key role in skin pigmentation and the melanizing response after exposure to UVR. The cell cycle inhibitor p16/CDKN2A also appears to have an important function in a cell cycle checkpoint response in skin after exposure to UVR. Both of these genes have been identified as risk factors in skin cancer, MC1R variants are associated with increased risk to both melanoma and nonmelanoma skin cancers, and p16/CDKN2A with increased risk of melanoma. Here we demonstrate that the increased expression of p16 after exposure to sub-erythemal doses of UVR is potentiated by alpha-MSH, a ligand for MC1R, and this effect is mimicked by cAMP, the intracellular mediator of alpha-MSH signaling via the MC1 receptor. This link between p16 and MC1R may provide a molecular basis for the increased skin cancer risk associated with MC1R polymorphisms.
Resumo:
To evaluate the passage of cytokines through the gastrointestinal tract, we investigated the digestion of interleukin-8 (IL-8) and tumour necrosis factor α (TNFα), in vitro and in vivo, and their propensity to induce intestinal inflammation. We serially immuno-assayed IL-8 and TNFα solutions co-incubated with each of three pancreatin preparations at pH 4.5 and pH 8. We gavaged IL-8, TNFα and marker into 15 Wistar rats, and measured their faecal cytokine concentrations by ELISA and histologically examined their guts. IL-8 immunoreactivity was extinguished by all pancreatin preparations after 1 h of incubation at 37 °C. TNFα concentration progressively fell from 1 to 4 h with all enzyme preparations. Buffer control samples maintained their cytokine concentrations throughout incubation. No IL-8 or TNFα was detected in any rat faecal pellets. There was no significant proinflammatory effect of the gavaged cytokines on rat intestine. IL-8 and TNFα in aqueous solution could well be fully digested in the CF gut when transit time is normal and exogenous enzymes are provided, although cytokines swallowed in viscous sputum may be protected from such digestion. Copyright © 2011 Elsevier B.V. All rights reserved
Resumo:
Heat shock protein 60s (hsp60) are remarkably immunogenic, and both T-cell and antibody responses to hsp60 have been reported in various inflammatory conditions. To clarify the role of hsp60 in T-cell responses in periodontitis, we examined the proliferative response of peripheral blood mononuclear cells (PBMC), as well as the cytokine profile and T-cell clonality, for periodontitis patients and controls following stimulation with recombinant human hsp60 and Porphyromonas gingivalis GroEL. To confirm the infiltration of hsp60-reactive T-cell clones into periodontitis lesions, nucleotide sequences within complementarity-determining region 3 of the T-cell receptor (TCR) beta-chain were compared between hsp60-reactive peripheral blood T cells and periodontitis lesion-infiltrating T cells. Periodontitis patients demonstrated significantly higher proliferative responses of PBMC to human hsp60, but not to P. gingivalis GroEL, than control subjects. The response was inhibited by anti-major histocompatibility complex class 11 antibodies. Analysis of the nucleotide sequences of the TCR demonstrated that human hsp60-reactive T-cell clones and periodontitis lesion-infiltrating T cells have the same receptors, suggesting that hsp60-reactive T cells accumulate in periodontitis lesions. Analysis of the cytokine profile demonstrated that hsp60-reactive PBMC produced significant levels of gamma interferon (IFN-gamma) in periodontitis patients, whereas P. gingivalis GroEL did not induce any, skewing toward a type1 or type2 cytokine profile. In control subjects no significant expression of IFN-gamma or interleukin 4 was induced. These results suggest that periodontitis patients have human hsp60-reactive T cells with a type I cytokine profile in their peripheral blood T-cell pools.
Resumo:
Aims: The aim of this study was to identify, clone and characterize the second amylase of Aeromonas hydrophila JMP636, AmyB, and to compare it to AmyA. Methods and Results: The amylase activity of A. hydrophila JMP636 is encoded by multiple genes. A second genetically distinct amylase gene, amyB, has been cloned and expressed from its own promoter in Escherichia coli. AmyB is a large alpha-amylase of 668 amino acids. Outside the conserved domains of alpha-amylases there is limited sequence relationship between the two alpha-amylases of A. hydrophila JMP636 AmyA and AmyB. Significant (80%) similarity exists between amyB and an alpha-amylase of A. hydrophila strain MCC-1. Differences in either the functional properties or activity under different environmental conditions as possible explanations for multiple copies of amylases in JMP636 is less likely after an examination of several physical properties, with each of the properties being very similar for both enzymes (optimal pH and temperature, heat instability). However the reaction end products and substrate specificity did vary enough to give a possible reason for the two enzymes being present. Both enzymes were confirmed to be alpha-type amylases. Conclusions: AmyB has been isolated, characterized and then compared to AmyA. Significance and Impact of Study: The amylase phenotype is rarely encoded by more than one enzyme within one strain, this study therefore allows the better understanding of the unusual amylase production by A. hydrophila.
Resumo:
We detail the automatic construction of R matrices corresponding to (the tensor products of) the (O-m\alpha(n)) families of highest-weight representations of the quantum superalgebras Uq[gl(m\n)]. These representations are irreducible, contain a free complex parameter a, and are 2(mn)-dimensional. Our R matrices are actually (sparse) rank 4 tensors, containing a total of 2(4mn) components, each of which is in general an algebraic expression in the two complex variables q and a. Although the constructions are straightforward, we describe them in full here, to fill a perceived gap in the literature. As the algorithms are generally impracticable for manual calculation, we have implemented the entire process in MATHEMATICA; illustrating our results with U-q [gl(3\1)]. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Chemosensory proteins (CSPs) are ubiquitous soluble small proteins isolated from sensory organs of a wide range of insect species, which are believed to be involved in chemical communication. We report the cloning of a honeybee CSP gene called ASP3c, as well as the structural and functional characterization of the encoded protein. The protein was heterologously secreted by the yeast Pichia pastoris using the native signal peptide. ASP3c disulfide bonds were assigned after trypsinolysis followed by chromatography and mass spectrometry combined with microsequencing. The pairing (Cys(I)-Cys(II), Cys(III)-Cys(IV)) was found to be identical to that of Schistocerca gregaria CSPs, suggesting that this pattern occurs commonly throughout the insect CSPs. CD measurements revealed that ASP3c mainly consists of alpha-helices, like other insect CSPs. Gel filtration analysis showed that ASP3c is monomeric at neutral pH. Using ASA, a fluorescent fatty acid anthroyloxy analogue as a probe, ASP3c was shown to bind specifically to large fatty acids and ester derivatives, which are brood pheromone components, in the micromolar range. It was unable to bind tested general odorants and other tested pheromones (sexual and nonsexual). This is the first report on a natural pheromonal ligand bound by a recombinant CSP with a measured affinity constant.
Resumo:
The selection, synthesis and chromatographic evaluation of a synthetic affinity adsorbent for human recombinant factor VIIa is described. The requirement for a metal ion-dependent immunoadsorbent step in the purification of the recombinant human clotting factor, FVIIa, has been obviated by using the X-ray crystallographic structure of the complex of tissue factor (TF) and Factor VIIa and has directed our combinatorial approach to select, synthesise and evaluate a rationally-selected affinity adsorbent from a limited library of putative ligands. The selected and optimised ligand comprises a triazine scaffold bis-substituted with 3-aminobenzoic acid and has been shown to bind selectively to FVIIa in a Ca2+-dependent manner. The adsorbent purifies FVIIa to almost identical purity (>99%), yield (99%), activation/degradation profile and impurity content (∼1000 ppm) as the current immunoadsorption process, while displaying a 10-fold higher static capacity and substantially higher reusability and durability. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Given the importance of protein complexes as therapeutic targets, it is necessary to understand the physical chemistry of these interactions under the crowded conditions that exist in cells. We have used sedimentation equilibrium to quantify the enhancement of the reversible homodimerization of alpha-chymotrypsin by high concentrations of the osmolytes glucose, sucrose, and raffinose. In an attempt to rationalize the ostuolyte-mediated stabilization of the a-chymotrypsin homodimer, we have used models based on binding interactions (transfer-free energy analysis) and steric interactions (excluded volume theory) to predict the stabilization. Although transfer-free energy analysis predicts reasonably well the relatively small stabilization observed for complex formation between cytochrome c and cytochrome c peroxidase, as well as that between bobtail quail lysozyme and a monoclonal Fab fragment, it underestimates the sugar-mediated stabilization of the alpha-chymotrypsin dimer. Although predictions based on excluded volume theory overestimate the stabilization, it would seem that a major determinant in the observed stabilization of the a-chymotrypsin homodimer is the thermodynamic nonideality arising from molecular crowding by the three small sugars.
Resumo:
The phototrophic purple non-sulfur bacterium Rhodobacter capsulatus expresses a wide variety of complex redox proteins in response to changing environmental conditions. Here we report the construction and evaluation of an expression system for recombinant proteins in that organism which makes use of the dor promoter from the same organism. A generic expression vector, pDorEX, was constructed and used to express sulphite:cytochrome c oxidoreductase from Starkeya novella, a heterodimeric protein containing both molybdenum and haem c. The recombinant protein was secreted to the periplasm and its biochemical properties were very similar to those of the native enzyme. The pDorEX system therefore seems to be potentially useful for heterologous expression of multi-subunit proteins containing complex redox cofactors. (C) 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Peroxisome proliferator-activated receptor (PPAR) alpha is a ligand-activated transcription factor that has been linked with rodent hepatocarcinogenesis. It has been suggested that PPARalpha mRNA expression levels are an important determinant of rodent hepatic tumorigenicity. Previous work in rat mammary gland epithelial cells showed significantly increased PPARalpha mRNA expression in carcinomas, suggesting the possible role of this isoform in rodent mammary gland carcinogenesis. In this study we sought to determine whether PPARalpha is expressed and dynamically regulated in human breast cancer MCF-7 and MDA-MB-231 cells. Having established the presence of PPARalpha in both cell types, we then examined the consequence of PPARa activation, by its ligands Wy-14,643 and clofibrate, on proliferation. With real-time reverse transcriptase-polymerase chain reaction, we showed that PPARalpha mRNA was dynamically regulated in MDA-MB-231 cells and that PPARalpha activation significantly increased proliferation of the cell line. In contrast, PPARalpha expression in MCF-7 cells did not change with proliferation during culture and was present at significantly lower levels than in MDA-MB-231 cells. However, PPARalpha ligand activation still significantly increased the proliferation of MCF-7 cells. The promotion of proliferation in breast cancer cell lines following PPARalpha activation was in stark contrast to the effects of PPARgamma-activating ligands that decrease proliferation in human breast cancer cells. our results established the presence of PPARalpha in human breast cancer cell lines and showed for the first time that activation of PPARalpha in human breast cancer cells promoted proliferation. Hence, this pathway may be significant in mammary gland tumorigenesis. (C) 2002 Wiley-Liss, Inc.
Resumo:
The retinoid orphan-related receptor-alpha (RORalpha) is a member of the ROR subfamily of orphan receptors and acts as a constitutive activator of transcription in the absence of exogenous ligands. To understand the basis of this activity, we constructed a homology model of Rill using the closely related TRbeta as a template. Molecular modeling suggested that bulky hydrophobic side chains occupy the RORa ligand cavity leaving a small but distinct cavity that may be involved in receptor stabilization. This model was subject to docking simulation with a receptor-interacting peptide from the steroid receptor coactivator, GR-interacting protein-1, which delineated a coactivator binding surface consisting of the signature motif spanning helices 3-5 and helix 12 [activation function 2 (AF2)]. Probing this surface with scanning alanine mutagenesis showed structural and functional equivalence between homologous residues of RORalpha and TRbeta. This was surprising (given that Rill is a ligand-independent activator, whereas TRbeta has an absolute requirement for ligand) and prompted us to use molecular modeling to identify differences between Rill and TRbeta in the way that the All helix interacts with the rest of the receptor. Modeling highlighted a nonconserved amino acid in helix 11 of RORa (Phe491) and a short-length of 3.10 helix at the N terminus of AF2 which we suggest i) ensures that AF2 is locked permanently in the holoconformation described for other liganded receptors and thus 2) enables ligand-independent recruitment of coactivators. Consistent with this, mutation of RORa Phe491 to either methionine or alanine (methionine is the homologous residue in TRbeta), reduced and ablated transcriptional activation and recruitment of coactivators, respectively. Furthermore, we were able to reconstitute transcriptional activity for both a deletion mutant of Ill lacking All and Phe491 Met, by overexpression of a GAL-AF2 fusion protein, demonstrating ligand-independent recruitment of AF2 and a role for Phe491 in recruiting AF2.
Resumo:
Background: Steatosis occurs in more than 50% of patients with chronic hepatitis C and is associated with increased hepatic fibrosis. In many of these patients the pathogenesis of steatosis appears to be the some as for patients with non-alcoholic fatty liver disease-that is, related to visceral adiposity and obesity. Methods: The effect of a three month weight reduction programme on liver biochemistry and metabolic parameters was examined in 19 subjects with steatosis and chronic hepatitis C. Paired liver biopsies were performed in 10 subjects, prior to and 3-6 months following the intervention, to determine the effect of weight loss on liver histology. Results: There was a mean weight loss of 5.9 (3.2) kg and a mean reduction in waist circumference of 9.0 (5.0) cm. In 16 of the 19 patients, serum alanine aminotransferase levels fell progressively with weight loss. Mean fasting insulin fell from 16 (7) to 11 (4) mmol/l (p