216 resultados para lattice constants
Resumo:
O-Acyl esters were prepared from salicylic acid and diflunisal by esterification with the appropriate acyl anhydride (in the presence of sulfuric acid at 80 degrees C) or acyl chloride (in the presence of pyridine at 0 degrees C). Synthesis, identification and characterization of these compounds is described. In vitro hydrolysis, solubility and protein binding studies of these O-acyl esters were performed. For the diflunisal esters, the melting points fell as the side chain was increased from ethyl to pentyl. The melting points showed no significant difference as the length of the side chain was increased from pentyl to heptyl. The aspirin analogues showed a similar trend, The relationship between solubility and carbon chain length agreed closely with that for the melting points with carbon chain length. In vitro non-enzymatic hydrolysis studies concluded that: (1) hydrolysis rate constants generally decreased with carbon chain length; (2) the diflunisal esters have shorter half lives compared with their salicylate counterparts; and (3) the in vitro hydrolysis of these compounds was retarded by the presence of bovine serum albumin. Protein binding experiments showed that the strength of binding of the aspirin and diflunisal analogues to bovine serum albumin increased with carbon chain length. (C) 1997 Elsevier Science B.V.
Resumo:
Conotoxins are small, cysteine-rich peptides isolated from the venom of Conus spp. of predatory marine snails, which selectively target specific receptors and ion channels critical to the functioning of the neuromuscular system. alpha-Conotoxins PnIA and PnIB are both 16-residue peptides (differing in sequence at only two positions) isolated from the molluscivorous snail Conus pennaceus. In contrast to the muscle-selective alpha-conotoxin GI from Conus geographus, PnIA and PnIB block the neuronal nicotinic acetylcholine receptor (nAChR). Here, we describe the crystal structure of PnIB, solved at a resolution of 1.1 Angstrom and phased using the Shake-and-Bake direct methods program. PnIB crystals are orthorhombic and belong to the space group P2(1)2(1)2(1) with the following unit cell dimensions: a = 14.6 Angstrom, b = 26.1 Angstrom, and c = 29.2 Angstrom. The final refined structure of alpha-conotoxin PnIB includes all 16 residues plus 23 solvent molecules and has an overall R-factor of 14.7% (R-free of 15.9%). The crystal structures of the alpha-conotoxins PnIB and PnIA are solved from different crystal forms, with different solvent contents. Comparison of the structures reveals them to be very similar, showing that the unique backbone and disulfide architecture is not strongly influenced by crystal lattice constraints or solvent interactions. This finding supports the notion that this structural scaffold is a rigid support for the presentation of important functional groups. The structures of PnIB and PnIA differ in their shape and surface charge distribution from that of GI.
Resumo:
The concept of parameter-space size adjustment is pn,posed in order to enable successful application of genetic algorithms to continuous optimization problems. Performance of genetic algorithms with six different combinations of selection and reproduction mechanisms, with and without parameter-space size adjustment, were severely tested on eleven multiminima test functions. An algorithm with the best performance was employed for the determination of the model parameters of the optical constants of Pt, Ni and Cr.
Resumo:
Background: Versutoxin (delta-ACTX-Hv1) is the major component of the venom of the Australian Blue Mountains funnel web spider, Hadronyche versuta. delta-ACTX-Hv1 produces potentially fatal neurotoxic symptoms in primates by slowing the inactivation of voltage-gated sodium channels; delta-ACTX-Hv1 is therefore a useful tool for studying sodium channel function. We have determined the three-dimensional structure of delta ACTX-Hv1 as the first step towards understanding the molecular basis of its interaction with these channels. Results: The solution structure of delta-ACTX-Hv1, determined using NMR spectroscopy, comprises a core beta region containing a triple-stranded antiparallel beta sheet, a thumb-like extension protruding from the beta region and a C-terminal 3(10) helix that is appended to the beta domain by virtue of a disulphide bond. The beta region contains a cystine knot motif similar to that seen in other neurotoxic polypeptides. The structure shows homology with mu-agatoxin-l, a spider toxin that also modifies the inactivation kinetics of vertebrate voltage-gated sodium channels. More surprisingly, delta-ACTX-Hv1 shows both sequence and structural homology with gurmarin, a plant polypeptide. This similarity leads us to suggest that the sweet-taste suppression elicited by gurmarin may result from an interaction with one of the downstream ion channels involved in sweet-taste transduction. Conclusions: delta-ACTX-Hv1 shows no structural homology with either sea anemone or alpha-scorpion toxins, both of which also modify the inactivation kinetics of voltage-gated sodium channels by interacting with channel recognition site 3. However, we have shown that delta-ACTX-Hv1 contains charged residues that are topologically related to those implicated in the binding of sea anemone and alpha-scorpion toxins to mammalian voltage-gated sodium channels, suggesting similarities in their mode of interaction with these channels.
Resumo:
The effect of controlled In3+ substitution on to the B-site in the perovskite oxygen ion conductor La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM) has been examined with a view to exploring the influence on oxygen ion conductivity. In combination with the electrical conductivity study, detailed microstructural analysis was used to verify the location of the substituting cation and to determine the nature of secondary phase formation. The indium species clearly substituted for Ga3+ on the B-site of the lattice and the electrical conductivity showed a gradual decrease as the In+3 content increased. The interpretation of this data was complicated by the formation of the secondary phases LaInO3 and LaSrGaO4. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We report biogenic magnetite whiskers, with axial ratios of 6: 1, elongated in the [1 1 1]. [1 1 2] and [1 0 0] directions, resembling the magnetite whiskers detected in the Martian meteorite ALH84001 by Bradley ct nl., and interpreted by those authors as evidence of vapour-phase (abiogenic) growth. Magnetosomal whiskers with extended defects consistent with screw dislocations and magnetosomes resembling flattened twinned platelets, as well as other twinning phenomena and other structural defects, are also reported here. Magnetosomes with teardrop-shaped. cuboidal. irregular and jagged structures similar to those detected in ALH84001 by McKay et al.. coprecipitation of magnetite possibly with amorphous calcium carbonate, coprecipitation of magnetite possibly with amorphous silica, the incorporation of titanium in volutin inclusions and disoriented arrays of magnetosomes are also described. These observations demonstrate that the structures of the magnetite particles in ALH84001. their spatial arrange ment and coprecipitation with carbonates and proximity to silicates are consistent with being biogenic. Electron-beam-induced flash-melting of magnetosomes produced numerous screw dislocations in the (1 1 1). (1 0 0) and (1 1 0) lattice planes and induced fusion of platelets. From this, the lack of screw dislocations reported in the magnetite particles in ALH84001 (McKay et al.. and Bradley et al.) indicates that they have a low-temperature origin.
Resumo:
The Izergin-Korepin model on a semi-infinite lattice is diagonalized by using the level-one vertex operators of the twisted quantum affine algebra U-q[((2))(2)]. We give the bosonization of the vacuum state with zero particle content. Excitation states are given by the action of the vertex operators on the vacuum state. We derive the boundary S-matrix. We give an integral expression of the correlation functions of the boundary model, and derive the difference equations which they satisfy. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Non-periodic structural variation has been found in the high T-c cuprates, YBa2Cu3O7-x and Hg0.67Pb0.33Ba2Ca2Cu3O8+delta, by image analysis of high resolution transmission electron microscope (HRTEM) images. We use two methods for analysis of the HRTEM images. The first method is a means for measuring the bending of lattice fringes at twin planes. The second method is a low-pass filter technique which enhances information contained by diffuse-scattered electrons and reveals what appears to be an interference effect between domains of differing lattice parameter in the top and bottom of the thin foil. We believe that these methods of image analysis could be usefully applied to the many thousands of HRTEM images that have been collected by other workers in the high temperature superconductor field. This work provides direct structural evidence for phase separation in high T-c cuprates, and gives support to recent stripes models that have been proposed to explain various angle resolved photoelectron spectroscopy and nuclear magnetic resonance data. We believe that the structural variation is a response to an opening of an electronic solubility gap where holes are not uniformly distributed in the material but are confined to metallic stripes. Optimum doping may occur as a consequence of the diffuse boundaries between stripes which arise from spinodal decomposition. Theoretical ideas about the high T-c cuprates which treat the cuprates as homogeneous may need to be modified in order to take account of this type of structural variation.
Resumo:
The catalytic properties of enzymes are usually evaluated by measuring and analyzing reaction rates. However, analyzing the complete time course can be advantageous because it contains additional information about the properties of the enzyme. Moreover, for systems that are not at steady state, the analysis of time courses is the preferred method. One of the major barriers to the wide application of time courses is that it may be computationally more difficult to extract information from these experiments. Here the basic approach to analyzing time courses is described, together with some examples of the essential computer code to implement these analyses. A general method that can be applied to both steady state and non-steady-state systems is recommended. (C) 2001 academic Press.
Resumo:
The extended X-ray absorption fine structure spectroscopy (EXAFS) of (ND4)(2)[CU(D2O)(6)](SO4)(2) at 5, 14,100, 200, and 298 K is reported. This indicates that the Cu-O bond lengths of the Cu(D2O)(6)(2+) ion do not change significantly within this temperature range, which contrasts with EPR results and X-ray and neutron diffraction experiments, which imply that two of the Cu-(D2O) bonds converge in length as the temperature is raised. The EXAFS measurements thus confirm that the bond distances yielded by the diffraction experiments refer to the average positions of ligands involved in a dynamic equilibrium in which the directions of the long and intermediate bonds of the Jahn-Teller distorted Cu(D2O)(6)(2+) ion are interchanged in the crystal lattice. Analysis of the displacement parameters is consistent with this interpretation, as are the wave functions calculated using a model involving Jahn-Teller vibronic coupling and the influence of lattice strain interactions.
Resumo:
Free radical bulk copolymerization of methyl methacrylate (MMA) and allyl acetate (AAc) has been investigated using electron spin resonance (ESR) and FT-near infrared (FTNIR) spectroscopy. Data are used to evaluate the rate constants. The mole fraction of AAc plays an important role in the copolymerization of these two monomers. AAc not only delays the Trommsdorff effect but also increases the onset of percentage total conversion at which the Trommsdorff region begins. With AAc fraction 0.5 and higher, no Trommsdorff effect was observed. Inclusion of AAc into copolymer structure mainly occurs in the Trommsdorf region or when the AAc fraction in the comonomer feed is dominant. This is associated with a drop in the concentration of propagating radicals. However, ESR spectra indicate that the MMA propagating radical is predominant during the reaction. In the comonomer mixtures where a Trommsdorff region can be observed, the addition of AAc does not produce any significant change in k(p) and k(t) in the steady state region. Major changes in k(p) and k(t) are observed after the gel point and glassy state, respectively. (C) 2001 Society of Chemical Industry.
Resumo:
The free radical polymerization of styrene in bulk was monitored by ESR and FT near-infrared spectroscopy at 70°C for a series of concentrations of the initiator, dimethyl 2,2′-azobis(isobutyrate). In order to obtain detailed kinetic information over the intire conversion range, and the gel effect range in particular, conversion and free radical concentration data points were accumulated with exceptionally short time intervals. The polystyrene radical concentration ([St•]) went through a sharp maximum at the gel effect, a feature that has hitherto escaped observation due to the rapid concentration changes in the gel effect range relative to the data point time intervals of previous studies. Temperature measurements throughout the polymerization were employed to calculate that a temperature increase was not the cause of the [St•] maximum, which thus appeares to be a genuine feature of the gel effect of this system under isothermal conditions. The propagation rate constant (kp) as a function of monomer conversion exhibited a marked dependence on initiator concentration at high monomer conversion; the sharp decrease in kp with increasing conversion was shifted to higher conversions with increasing initiator concentration.
Resumo:
The quasi mode theory of macroscopic quantization in quantum optics and cavity QED developed by Dalton, Barnett and Knight is generalized. This generalization allows for cases in which two or more quasi permittivities, along with their associated mode functions, are needed to describe the classical optics device. It brings problems such as reflection and refraction at a dielectric boundary, the linear coupler, and the coupling of two optical cavities within the scope of the theory. For the most part, the results that are obtained here are simple generalizations of those obtained in previous work. However the coupling constants, which are of great importance in applications of the theory, are shown to contain significant additional terms which cannot be 'guessed' from the simpler forms. The expressions for the coupling constants suggest that the critical factor in determining the strength of coupling between a pair of quasi modes is their degree of spatial overlap. In an accompanying paper a fully quantum theoretic derivation of the laws of reflection and refraction at a boundary is given as an illustration of the generalized theory. The quasi mode picture of this process involves the annihilation of a photon travelling in the incident region quasi mode, and the subsequent creation of a photon in either the incident region or transmitted region quasi modes.
Resumo:
The generalization of the quasi mode theory of macroscopic quantization in quantum optics and cavity QED presented in the previous paper, is applied to provide a fully quantum theoretic derivation of the laws of reflection and refraction at a boundary. The quasi mode picture of this process involves the annihilation of a photon travelling in the incident region quasi mode, and the subsequent creation of a photon in either the incident region or transmitted region quasi modes. The derivation of the laws of reflection and refraction is achieved through the dual application of the quasi mode theory and a quantum scattering theory based on the Heisenberg picture. Formal expressions from scattering theory are given for the reflection and transmission coefficients. The behaviour of the intensity for a localized one photon wave packet coming in at time minus infinity from the incident direction is examined and it is shown that at time plus infinity, the light intensity is only significant where the classical laws of reflection and refraction predict. The occurrence of both refraction and reflection is dependent upon the quasi mode theory coupling constants between incident and transmitted region quasi modes being nonzero, and it is seen that the contributions to such coupling constants come from the overlap of the mode functions in the boundary layer region, as might be expected from a microscopic theory.