204 resultados para breast cell
Resumo:
The major limiting factor in the successful application of adjuvant therapy for metastatic disease is the lack of adjuvant specificity that leads to severe side effects. Reasoning that T cells of the immune system are highly specific, we generated tumor-specific T cells by genetic modification of mouse primary T cells with a chimeric receptor reactive with the human breast cancer-associated Ag erbB-2. These T cells killed breast cancer cells and secreted IFN-gamma in an Ag-specific manner in vitro. We investigated their use against metastatic breast cancer in mice in an adjuvant setting, and compared their effectiveness with the commonly applied adjuvants doxorubicin, 5-fluorouracil, and herceptin. Mice were inoculated orthotopically with the human erbB-2-expressing spontaneously metastatic mouse breast cancer 4T1.2 in mammary tissue, and the primary tumor was surgically removed 8 days later., Significant metastatic disease was demonstrated in lung and liver at the time of surgery on day 8 with increased tumor burden at later time points. T cell adjuvant treatment of day 8 metastatic disease resulted in dramatic increases in survival of mice, and this survival was significantly greater than that afforded by either doxorubicin, 5-fluorouracil, or herceptin.
Resumo:
Objectives: To review changes in patterns of care for women with early invasive breast cancer in Western Australia from 1989 to 1999, and compare management with recommendations in the 1995 National Health and Medical Research Council guidelines. Design and setting: Population-based surveys of all cases listed in the Western Australian Cancer Registry and Western Australian Hospital Morbidity Data System. Main outcome measures: Congruence of care with guidelines. Results: Data were available for 1649 women with early invasive breast cancer (categories pT1 or pT2; pN0 or pN1; and M0). In 1999, 96% had a preoperative diagnosis by fine-needle aspiration or core biopsy (compared with 66% in 1989), with a synoptic pathology report on 95%. Breast-conserving surgery was used for 66% of women with mammographically detected tumours (v 35% in 1989) and 46% of those with clinically detected tumours (v 28% in 1989), with radiotherapy to the conserved breast in 90% of these cases (83% in 1989). Adjuvant chemotherapy was given to 92% of premenopausal women with node-positive disease and 63% with poor-prognosis node-negative tumours (v 78% and 14%, respectively, in 1989). Among postmenopausal women with receptor-positive tumours, tamoxifen was prescribed for 91% of those with positive nodes (85% in 1989) and 79% of those with negative nodes (30% in 1989). Among postmenopausal women with receptor-negative tumours, chemotherapy was prescribed for 70% with positive nodes (v 33%) and 58% with negative nodes (v none). Conclusions: Patterns of management of women with early invasive breast cancer in Western Australia during the 1990s changed significantly in all respects toward those recommended in the 1995 guidelines.
Resumo:
Statement of the study: Based on data from ecological and analytic epidemiological studies, we have proposed that low prenatal vitamin D is a candidate risk-modifying factor for schizophrenia. Previously, we demonstrated that low prenatal vitamin D adversely affected brain development in neonatal rats (Eyles et al, 2003). Here we examine the impact of both prenatal and early life hypovitaminosis D on various outcomes in the adult rat brain. Methods: Female Sprague-Dawley rats were made vitamin D deficient via the use of a special diet (Dyets CA) and lighting conditions that excluded UVB radiation. Animals were kept under these conditions for 6 weeks then mated with males kept under normal conditions. Vitamin deplete dams were kept under these conditions during pregnancy. Offspring from two test groups were examined. Offspring were either reared with dams repleted with vitamin D at birth or remained under deplete conditions till weaning. Both test groups were weaned under normal vitamin D conditions and remained so till testing at adulthood. We compared the brains of adult offspring kept under both test conditions with animals from control environments. Summary of results: We found a significant persistent dose-related increase in lateral ventricle volume and alterations in anterior cingulate and prefrontal cortical cell densities (consistent with the known prodifferentiation properties of this steroid). In both test groups we observed a reduced expression of NGF as well as a down-regulation of transcripts coding for GABAA alpha 4 receptor and two neuronal structural elements; MAP2 and Neurofilament L. Conclusion: These findings provide further evidence that vitamin D is involved in brain development. An increase in prefrontal cortical cell density, a reduction neuronal structural elements and persistent ventriculomegaly are all common anatomical findings in the brains of patients with schizophrenia. The specific reduction in transcripts for neuronal structural proteins but not GFAP is also in accordance with the proposal that frontal cortical architecture in schizophrenia reflects a reduction in connectivity rather than a reduction in glial processes(Goldman-Rakic and Selemon, 1997). These findings confirm the biological plausibility of early life hypovitaminosis D as a risk factor for schizophrenia.
Resumo:
The suspension Chinese Hamster Ovary cell line, 13-10-302, utilizing the metallothionein (MT) expression system producing recombinant human growth hormone (hGH) was studied in a serum-free and cadmium-free medium at different fermentation scales and modes of operation. Initial experiments were carried out to optimize the concentration of metal addition to induce the MT promoter. Subsequently, the cultivation of the 13-10-302 cell line was scaled up from spinner flasks into bioreactors, and the cultivation duration was extended with fed-batch and perfusion strategies utilizing 180 muM zinc to induce the promoter controlling expression of recombinant hGH. It was shown that a fed-batch process could increase the maximum cell numbers twofold, from 3.3 to 6.3 x 10(6) cell/mL, over those obtained in normal batch fermentations, and this coupled with extended fermentation times resulted in a fourfold increase in final hGH titer, from 135 +/- 15 to 670 +/- 70 mg/L at a specific productivity q(hGH) value of 12 pg cell(-1)d(-1). The addition of sodium butyrate increased the specific productivity of hGH in cells to a value of approximately 48 pg cell(-1)d(-1), resulting in a final hGH titer of over a gram per liter during fed-batch runs. A BioSep acoustic cell recycler was used to retain the cells in the bioreactor during perfusion operation. It was necessary to maintain the specific feeding rates (SFR) above a value of 0.2 vvd/(10(6) cell/mL) to maintain the viability and productivity of the 13-10-302 cells; under these conditions the viable cell number increased to over 107 cell/mL and resulted in a volumetric productivity of over 120 mg(hGH) L(-1)d(-1). Process development described in this work demonstrates cultivation at various scales and sustained high levels of productivity under cadmium free condition in a CHO cell line utilizing an inducible metallothionein expression system. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Computational models complement laboratory experimentation for efficient identification of MHC-binding peptides and T-cell epitopes. Methods for prediction of MHC-binding peptides include binding motifs, quantitative matrices, artificial neural networks, hidden Markov models, and molecular modelling. Models derived by these methods have been successfully used for prediction of T-cell epitopes in cancer, autoimmunity, infectious disease, and allergy. For maximum benefit, the use of computer models must be treated as experiments analogous to standard laboratory procedures and performed according to strict standards. This requires careful selection of data for model building, and adequate testing and validation. A range of web-based databases and MHC-binding prediction programs are available. Although some available prediction programs for particular MHC alleles have reasonable accuracy, there is no guarantee that all models produce good quality predictions. In this article, we present and discuss a framework for modelling, testing, and applications of computational methods used in predictions of T-cell epitopes. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Natural killer (NK) cells are innate effector lymphocytes necessary for defence against stressed, microbe-infected, or malignant cells. NK cells kill target cells by either of two major mechanisms that require direct contact between NK cells and target cells. In the first pathway, cytoplasmic granule toxins, predominantly a membrane-disrupting protein known as perforin, and a family of structurally related serine C, proteases (granzymes) with various substrate specificities, are secreted by exocytosis and together induce apoptosis of the target cell. The granule-exocytosis pathway potently activates cell-death mechanisms that operate through the activation of apoptotic cysteine proteases (caspases), but can also cause cell death in the absence of activated caspases. The second pathway involves the engagement of death receptors (e.g. Fas/CD95) on target cells by their cognate ligands (e.g. FasL on NK cells, resulting in classical caspase-dependent apoptosis. The comparative role of these pathways in the pathophysiology of many diseases is being dissected by analyses of gene-targeted mice that lack these molecules, and humans who have genetic mutations affecting these pathways. We are also now learning that the effector function of NK cells is controlled by interactions involving specific NK cell receptors and their cognate ligands, either on target cells, or other cells of the immune system. This review will discuss the functional importance of NK cell cytotoxicity and the receptor/ligand interactions that control these processes. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A dendritic cell (DC) imbalance with a marked deficiency in CD4(-)8(+) DC occurs in non-obese diabetic (NOD) mice, a model of human autoimmune diabetes mellitus. Using a NOD congenic mouse strain, we find that this CD4(-)8(+) DC deficiency is associated with a gene segment on chromosome 4, which also encompasses non-MHC diabetes susceptibility loci. Treatment of NOD mice with fms-like tyrosine kinase 3 ligand (FL) enhances the level of CD4(-)8(+) DC, temporarily reversing the DC subtype imbalance. At the same time, fms-like tryosine kinase 3 ligand treatment blocks early stages of the diabetogenic process and with appropriately timed administration can completely prevent diabetes development. This points to a possible clinical use of FL to prevent autoimmune disease.
Resumo:
We have assessed the outcomes for all women diagnosed with invasive breast cancer in Western Australia during 1989, 1994 and 1999, and compared the results for surgeons who treat 20 or more cases per year with those of surgeons who treat less. Women treated by high caseload surgeons were more likely to retain their breast (53.3% vs. 36.7%, p < 0.001), have adjuvant radiotherapy (50.0% vs. 30.6%, p < 0.001), and be alive after 4 years (1989, 86% vs. 82%; 1994, 89% vs. 84%; 1999, 90% vs. 79%, HR 0.71, p = 0.03). Adjusting for age and year of diagnosis, women were not more likely to be treated with adjuvant chemotherapy (29.2% vs. 20.9%, p = 0.28). In 1989 35% of women were treated by high caseload surgeons. By 1999 this had risen to 82%. The results confirm that women treated by high caseload surgeons have better outcomes. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The risk of breast cancer arises from a combination of genetic susceptibility and environmental factors. Recent studies show that type and duration of use of hormone replacement therapy affect a women's risk of developing breast cancer.1-7 The women's health initiative trial was stopped early because of excess adverse cardiovascular events and invasive breast cancer with oestrogen and progestogen.6 The publicity increased public awareness of the risks of hormone replacement therapy, and this was heightened by the publication of the million women study.2 However, the recently published oestrogen only arm of the women's health initiative trial suggests that this formulation may reduce the risk of breast cancer.8 To help make sense of the often confusing information,9 women and clinicians need individual rather than population risk data. We have produced estimates that can be used to calculate individual risk for women living up to the age of 79 and suggest the risk
Resumo:
This study has calculated the potential impact of hormone replacement therapy (HRT) on breast cancer incidence in Australia and has estimated how changes in prescribing HRT to women could affect this risk. The effects of HRT on breast cancer incidence was estimated using the attributable fraction technique with prevalence data derived from the 2001 Australian Health Survey and published rates of breast cancer relative risks from HRT use. In Australia, 12% of adult women were current HRT users and in 2001, 11783 breast cancers were reported. Of these, 1066 (9%) were potentially attributable to HRT. Restricting HRT use to women aged less than 65 years, ceasing HRT prescribing after 10 years or limiting combined oestrogen and progesterone HRT to five years (but otherwise keeping prescription levels to 2001 levels) may reduce the annual breast cancer caseload by 280 (2.4%), 555 (4.7%) or 674 (5.7%), respectively. In conclusion, this study has demonstrated that when HRT prevalence is relatively high, the effect on breast cancer incidence in the population will be significant. A small modification in HRT prescribing practices may impact breast cancer incidence in Australia with associated financial and health care provision implications. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
IL-1 is a key proinflammatory driver of several autoimmune diseases including juvenile inflammatory arthritis, diseases with mutations in the NALP/cryopyrin complex and Crohn’s disease, and is genetically or clinically associated with many others. IL-1 is a pleiotropic proinflammatory cytokine; however the mechanisms by which increased IL-1 signaling promotes autoreactive T cell activity are not clear. Here we show that autoimmune-prone NOD and IL-1 receptor antagonist-deficient C57BL/6 mice both produce high levels of IL-1, which drives autoreactive effector cell expansion. IL-1beta drives proliferation and cytokine production by CD4+CD25+FoxP3– effector/memory T cells, attenuates CD4+CD25+FoxP3+ regulatory T cell function, and allows escape of CD4+CD25– autoreactive effectors from suppression. Thus, inflammation or constitutive overexpression of IL-1beta in a genetically predisposed host can promote autoreactive effector T cell expansion and function, which attenuates the ability of regulatory T cells to maintain tolerance to self.