228 resultados para MARINE-FISH
Resumo:
Tourism development can have positive and/or negative impacts on wildlife. However, if tourism is developed in accordance with the basic tenets of wildlife tourism such an activity can be sustainable and can aid the conservation of species. Based on two case studies in Queensland, Australia, this article outlines the various economic and conservation benefits arising from wildlife-based tourism. Some of the benefits are direct, such as tangible economic benefits, others are less tangible, such as increased visitors’ willingness to pay in principle for the conservation of species. Wildlife-based tourism is shown to foster political support for the conservation of species utilized for such tourism by various mechanisms. Non-consumptive uses of wildlife are not only sustainable, but may provide a viable alternative to consumptive uses.
Resumo:
Marine sponges often harbour communities of symbiotic microorganisms that fulfil necessary functions for the well-being of their hosts. Microbial communities associated with the sponge Rhopaloeides odorabile were used as bioindicators far sublethal cupric ion (Cu2+) stress. A combined strategy incorporating molecular, cultivation and electron microscopy techniques was adopted to monitor changes in microbial diversity. The total density of sponge-associated bacteria and counts of the predominant cultivated symbiont (alpha -proteobacterium strain NW001) were significantly reduced in response to Cu2+ concentrations of 1.7 mug l(-1) and above after 14 days of exposure. The number of operational taxonomic units (OTUs) detected by restriction fragment length polymorphism (RFLP) decreased by 64% in sponges exposed to 223 mug l(-1) Cu2+ for 48 h and by 46% in sponges exposed to 19.4 mug l(-1) Cu2+ for 14 days. Electron microscopy was used to identify 17 predominant bacterial morphotypes, composing 47% of the total observed cells in control sponges. A reduction In the proportion of these morphotypes to 25% of observed cells was evident in sponges exposed to a Cu2+ concentration of 19.4 mug l(-1). Although the abundance of most morphotypes decreased under Cu2+ stress, three morphotypes were not reduced in numbers and a single morphotype actually increased in abundance. Bacterial numbers, as detected using fluorescence in situ hybridization (FISH), decreased significantly after 48 h exposure to 19.4 mug l(-1) Cu2+. Archaea, which are normally prolific in R. odorabile, were not detected after exposure to a Cu2+ concentration of 19.4 mug l(-1) for 14 days, indicating that many of the microorganisms associated with R. odorabile are sensitive to free copper. Sponges exposed to a Cu2+ concentration of 223 mug l(-1) became highly necrosed after 48 h and accumulated 142 +/- 18 mg kg(-1) copper, whereas sponges exposed to 19.4 mug l(-1) Cu2+ accumulated 306 +/- 15 mg kg(-1) copper after 14 days without apoptosis or mortality. Not only do sponges have potential for monitoring elevated concentrations of heavy metals but also examining changes in their microbial symbionts is a novel and sensitive bioindicator for the assessment of pollution on important microbial communities.
Resumo:
The southern Australian marine macroalgal flora has the highest levels of species richness and endemism of any regional macroalgal flora in the world. Analyses of species composition and distributions for the southern Australian flora have identified four different floristic elements, namely the southern Australian endemic element, the widely distributed temperate element, the tropical element and a cold water element. Within the southern Australian endemic element, four species distribution patterns are apparent, thought to largely result from the Jurassic to Oligocene fragmentation of East Gondwana, the subsequent migration of Tethyan ancestors from the west Australian coast and the later invasion of high latitude Pacific species. Climatic deterioration from the late Eocene to the present is thought responsible for the replacement of the previous tropical south coast flora by an endemic temperate flora which has subsequently diversified in response to fluctuating environmental conditions, abundant rocky substrata and substantial habitat heterogeneity. High levels of endemism are attributed to Australia's long isolation and maintained, as is the high species richness, by the lack of recent mass extinction events. The warm water Leeuwin Current has had profound influence in the region since the Eocene, flowing to disperse macroalgal species onto the south coast as well as ameliorating the local environment. It is now evident that the high species richness and endemism we now observe in the southern Australian marine macroalgal flora can be attributed to a complex interaction of biogeographical, ecological and phylogenetic processes over the last 160 million years.
Resumo:
Many coral reef fish are beautifully coloured and the reflectance spectra of their colour patterns may include UVa wavelengths (315-400 nm) that are largely invisible to the human eye (Losey, G. S., Cronin, T. W., Goldsmith, T. H., David, H., Marshall, N. J., & McFarland, W.N, (1999). The uv visual world of fishes: a review. Journal of Fish Biology, 54, 921-943; Marshall, N. J. & Oberwinkler, J. (1999). The colourful world of the mantis shrimp. Nature, 401, 873-874). Before the possible functional significance of UV patterns can be investigated, it is of course essential to establish whether coral reef fishes can see ultraviolet light. As a means of tackling this question, in this study the transmittance of the ocular media of 211 coral reef fish species was measured. It was found that the ocular media of 50.2% of the examined species strongly absorb light of wavelengths below 400 nm, which makes the perception of UV in these fish very unlikely. The remaining 49.8% of the species studied possess ocular media that do transmit UV light, making the perception of UV possible. (C) 2001 Elsevier Science Ltd. All rights reserved.