160 resultados para LAND-SURFACE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to develop a method for use in investigations of spatial biomass distribution in solid-state fermentation systems, confocal scanning laser microscopy was used to determine the concentrations of aerial and penetrative biomass against height and depth above and below the substrate surface, during growth of Rhizopus oligosporus on potato dextrose agar. Penetrative hyphae had penetrated to a depth of 0.445 cm by 64 h and showed rhizoid morphology, in which the maximum biomass concentration, of 4.45 mg dry wt cm(-3), occurred at a depth of 0.075 cm. For aerial biomass the maximum density of 39.54 mg dry wt(-3) occurred at the substrate surface. For both aerial and penetrative biomass, there were two distinct regions in which the biomass concentration decayed exponentially with distance from the surface. For aerial biomass, the first exponential decay region was up to 0.1 cm height. The second region above the height of 0.1 cm corresponded to that in which sporangiophores dominated. This work lays the foundation for deeper studies into what controls the growth of fungal hyphae above and below the surfaces of solid substrates. (C) Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical properties of deep profile samples ( up to 12 m) of Ferrosols from northern Queensland were investigated to provide an understanding of the accumulation of nitrate ( NO3) within these soil profiles. The influence of other cations and anions present in the soil solution or on the exchange and the charge chemistry of the profiles were examined with respect to the NO3 accumulations. The major ions in the soil solution were Na, NO3, and chloride ( Cl). Distinct regions of anion accumulation were observed; SO4 accumulated in the upper profile of all cores, whereas NO3 and Cl accumulations were restricted to the lower profile of cores with appreciable AEC (> 1 cmol(c)/kg). Gaines-Thomas selectivity coefficients were used to indicate exchange preference for cations and anions, and are as follows: Al > Ca similar to Mg > K > Na and sulfate (SO4) > Cl similar to NO3. The selectivity of SO4 increased and the extractable SO4 decreased in the lower profile of all cores. This has important implications for the adsorption of NO3 and Cl. The NO3 and Cl accumulations were shown to correspond to a region of low SO4 occupancy of the exchange sites in the lower profile. Along with the high SO4 selectivity, this suggests that SO4 may control the positioning of the NO3 accumulations. It was concluded that the NO3 accumulations were relatively stable under current management practices, although the reduction in NO3 inputs would likely see the gradual replacement of NO3 with Cl as a result of their comparable selectivity for exchange sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High concentrations of NH4+ (up to 270 kg N/ha) have been observed in a Vertosol below 1 m depth in south-east Queensland. This study examined the possibility that mineralisation associated with the removal of native vegetation (Acacia harpophylla) for cropping was responsible for the production of NH4+. Particularly, the potential contribution of decomposing root material and/or dissolved organic nitrogen (DON) leached into the subsoil after clearing was investigated. The amount of N that was contained within native vegetation root material was determined from an area of native vegetation adjacent to the cleared site containing elevated NH4+ concentrations. In addition, the amount of NH4+ that could be mineralised in the native vegetation soil was determined by monitoring NH4+ concentrations over 360 days in intact cores, and by conducting waterlogged incubations. To determine the rate at which a source of DON leached into the subsoil would mineralise, soil was amended with glutamic acid at a rate of 250 mg N/kg and placed under waterlogged incubation. The possibility that the acidic pH of the subsoil, or the lack of a significant subsoil microbial population, was inhibiting mineralisation was also examined by increasing soil pH from 4.4 to 7.0, and inoculating the subsoil with surface soil microorganisms during waterlogged incubations. Low concentrations of N, approximately 90 kg N/ha between 1.2 and 3 m, were found in the native vegetation root material. In addition, no net N mineralisation was observed in either the extended incubation of intact cores or in the control samples of the waterlogged incubations. Net N mineralisation was also not detected when the subsoil was amended with a source of organic N. Results indicate that this lack of mineralisation is largely due to pH inhibition of the microbial population. It is concluded that the mineralisation of either in situ organic material, or DON transported to the subsoil during leaching events, is unlikely to have significantly contributed to the subsoil NH4 accumulation at the study site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A probe tack test has been used for the in situ characterization of the surface stickiness of hemispherical drops with an initial radius of 3.5 mm while drying. Surface stickiness of drops of fructose and maltodextrin solutions dried at 63degreesC and 95degreesC was determined. The effect of addition of maltodextrin on fructose solution-was studied with fructose/maltodextrin solid mass ratios of 4: 1, 1: 1, and 1:4. Pure fructose solutions remained completely sticky and failed cohesively even when their moisture approached zero. Shortly after the start of drying, the surface of the maltodextrin drops formed a skin, which rapidly grew in thickness. Subsequently the drop surface became completely nonsticky probably due to transformation of outer layers into a glassy material. Addition of malto,dextrin significantly altered the surface stickiness of drops of fructose solutions, demonstrating its use as an effective drying aid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drying kinetics of low molecular weight sugars such as fructose, glucose, sucrose and organic acid such as citric acid and high molecular weight carbohydrate such as maltodextrin (DE 6) were determined experimentally using single drop drying experiments as well as predicted numerically by solving the mass and heat transfer equations. The predicted moisture and temperature histories agreed with the experimental ones within 6% average relative (absolute) error and average difference of +/- 1degreesC, respectively. The stickiness histories of these drops were determined experimentally and predicted numerically based on the glass transition temperature (T-g) of surface layer. The model predicted the experimental observations with good accuracy. A nonsticky regime for these materials during spray drying is proposed by simulating a drop, initially 120 mum in diameter, in a spray drying environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray reflectivity of bovine and sheep surfactant-associated protein B (SP-B) monolayers is used in conjunction with pressure-area isotherms and protein models to suggest that the protein undergoes changes in its tertiary structure at the air/water interface under the influence of surface pressure, indicating the likely importance of such changes to the phenomena of protein squeeze out as well as lipid exchange between the air-water interface and subphase structures. We describe an algorithm based on the well-established box- or layer-models that greatly assists the fitting of such unknown scattering-length density profiles, and which takes the available instrumental resolution into account. Scattering-length density profiles from neutron reflectivity of bovine SP-B monolayers on aqueous subphases are shown to be consistent with the exchange of a large number of labile protons as well as the inclusion of a significant amount of water, which is partly squeezed out of the protein monolayer at elevated surface pressures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional methods to determine surface diffusion of adsorbed molecules are proven to be inadequate for strongly adsorbing vapors on activated carbon. Knudsen diffusion permeability (B-k) for strongly adsorbing vapors cannot be directly estimated from that of inert gases such as helium. In this paper three models are considered to elucidate the mechanism of surface diffusion in activated carbon. The transport mechanism in all three models is a combination of Knudsen diffusion, viscous flow and surface diffusion. The collision reflection factor f (which is the fraction of molecules undergoing collision to the solid surface over reflection from the surface) of the Knudsen diffusivity is assumed to be a function of loading. It was found to be 1.79 in the limit of zero loading, and decreases as loading increases. The surface diffusion permeability increases sharply at very low pressures and then starts to decrease after it has reached a maximum (B(mum)s) at a threshold pressure. The initial rapid increase in the total permeability is mainly attributed to surface diffusion. Interestingly the B(mum)s for all adsorbates appear at the same volumetric adsorbed phase concentration, suggesting that the volume of adsorbed molecules may play an important role in the surface diffusion mechanism in activated carbon. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new model based on thermodynamic and molecular interaction between molecules to describe the vapour-liquid phase equilibria and surface tension of pure component. The model assumes that the bulk fluid can be characterised as set of parallel layers. Because of this molecular structure, we coin the model as the molecular layer structure theory (MLST). Each layer has two energetic components. One is the interaction energy of one molecule of that layer with all surrounding layers. The other component is the intra-layer Helmholtz free energy, which accounts for the internal energy and the entropy of that layer. The equilibrium between two separating phases is derived from the minimum of the grand potential, and the surface tension is calculated as the excess of the Helmholtz energy of the system. We test this model with a number of components, argon, krypton, ethane, n-butane, iso-butane, ethylene and sulphur hexafluoride, and the results are very satisfactory. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of various fallow management systems and cropping intensities on water infiltration were measured on an Alfisol at Ibadan in southwestern Nigeria. The objective was to determine the influence of the land use systems (a combination of crop-fallow sequences and intercropping types) on soil hydraulic properties obtained by disc permeameter and double-ring infiltration measurements. The experiment was established in 1989 as a split-plot design with four replications. The main plots were natural fallow, planted Pueraria phaseoloides and planted Leucaena leucocephala. The subplots were 1 year of maize/cassava intercrop followed by 3-year fallow (25% cropping intensity), or 2-year fallow (33% cropping intensity), or 1-year fallow (50% cropping intensity), or no fallow period (100% cropping intensity). Water infiltration rates and sorptivities were measured under saturated and unsaturated flow. Irrespective of land use, infiltration rates at the soil surface (121-324 cm h(-1)) were greater than those measured at 30 cm depth (55-144 cm h(-1)). This indicated that fewer large pores were present below 30 cm depth compared with 0-30 cm, depth. Despite some temporal variation, sorptivities with the highest mean value of 93.5 cm h(-1/2) increased as the cropping intensity decreased, suggesting a more continuous macropore system under less intensive land use systems. This was most likely due to continuous biopores created by perennial vegetation under long fallow systems. Intercropped maize and cassava yields also increased as cropping intensity decreased. The weak relationship between crop yields and hydraulic conductivity/infiltration rates suggests that the rates were not limiting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method is presented which allows the separation of the soil aggregate exterior from the aggregate core. The method employs a combination of aggregate freezing with rapid separation of aggregate exteriors using ultrasonic energy. The factors influencing the thickness of the removed aggregate surface layer include water content of the aggregate prior to freezing, temperature difference between that of the frozen aggregate and that of the liquid it is submerged in during sonification, sonification time and energy, and the type of the immersion liquid. The success of the method and the thickness of the removed aggregate surface were examined using barium ( Ba2+) as a tracer. Barium ( as BaCl2) is rapidly absorbed by soil and is present at only very low levels in natural soils. Surface layers of 0.2 - 0.4 cm thickness were successfully removed from aggregates of 1 - 4 cm diameter. Two examples are given from soils in northern NSW to demonstrate the occurrence of small- scale heterogeneity in soil chemical properties. Compared with the surface fraction, a 4 - 7% higher calcium concentration was found in the core fraction of a clay loam soil ( Dermosol). Conversely, on a cracking clay soil ( Vertosol), atrazine concentration was around 15 times greater in the aggregate surface fractions compared with core fractions. Compared with the traditional estimation of soil chemical properties on homogenised bulk soil samples, it is suggested that separate analysis of aggregate surface and core fractions could provide useful additional information on the relationships between soil properties and environmental responses.