157 resultados para C-protein
Resumo:
The Wilms' tumour suppressor gene (WT1) encodes a zinc finger-containing nuclear protein essential for kidney and urogenital development. Initially considered a transcription factor, there is mounting evidence that WT1 has a role in post-transcriptional processing. Using the interspecies heterokaryon assay, we have demonstrated that WT1 can undergo nucleocytoplasmic shuttling. We have also mapped the region responsible for nuclear export to residues 182-324. Our data add further complexity to the role of WT1 in trancriptional and post-transcriptional regulation. (C) 2003 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
Ageing results in a progressive, intrinsic and generalised imbalance of the control of regulatory systems. A key manifestation of this complex biological process includes the attenuation of the universal stress response. Here we provide the first global assessment of the ageing process as it affects the heat shock response, utilising human peripheral lymphocytes and cDNA microarray analysis. The genomic approach employed in our preliminary study was supplemented with a proteomic approach. In addition, the current study correlates the in vivo total antioxidant status with the age-related differential gene expression as well as the translational kinetics of heat shock proteins (hsps). Most of the genes encoding stress response proteins on the 4224 element microarray used in this study were significantly elevated after heat shock treatment of lymphocytes obtained from both young and old individuals albeit to a greater extent in the young. Cell signaling and signal transduction genes as well as some oxidoreductases showed varied response. Results from translational kinetics of induction of major hsps, from 0 to 24 It recovery period were broadly consistent with the differential expression of HSC 70 and HSP 40 genes. Total antioxidant levels in plasma from old individuals were found to be significantly lower by comparison with young, in agreement with the widely acknowledged role of oxidant homeostasis in the ageing process. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Early pregnancy factor (EPF) is a secreted protein, present in serum during early pregnancy and essential for maintaining viability of the embryo. It is a homologue of chaperonin 10 (Cpn10) but, unlike Cpn10, it has an extracellular role. EPF has immunosuppressive and growth regulatory properties. Previously we have reported the preparation of recombinant EPF (rEPF) and shown that treatment with rEPF will suppress clinical signs of MBP-EAE in Lewis rats and PLP-EAE in SJL/J mice. In the present study, these findings have been extended to investigate possible mechanisms involved in the action of EPF. Following treatment of mice with rEPF from the day of inoculation, there were fewer infiltrating CD3+ and CD4+ cells in the parenchyma of the spinal cord during the onset of disease and after the initial episode, compared with mice treated with vehicle. Expression of the integrins LFA-1, VLA-4 and Mac-1 and of members of the immunoglobulin superfamily of adhesion molecules ICAM-1 and VCAM-1 was suppressed in the central nervous system (CNS) following rEPF treatment. The expression of PECAM-1 was not affected. To determine if rEPF suppressed T cell activation in the periphery, the delayed-type hypersensitivity (DTH) reaction of normal BALB/c mice to trinitrochlorobenzene (TNCB) following treatment with rEPF was studied. The results showed that treatment with rEPF suppressed the DTH reaction, demonstrating the ability of EPF to downregulate the cell-mediated immune response. These results indicate that suppression of immunological mechanisms by rEPF plays a major role in the reduction of clinical signs of disease in experimental autoimmune encephalomyelitis (EAE). (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The pathogenesis-related (PR) protein superfamily is widely distributed in the animal, plant, and fungal kingdoms and is implicated in human brain tumor growth and plant pathogenesis. The precise biological activity of PR proteins, however, has remained elusive. Here we report the characterization, cloning and structural homology modeling of Tex31 from the venom duct of Conus textile. Tex31 was isolated to >95% purity by activity-guided fractionation using a para-nitroanilide substrate based on the putative cleavage site residues found in the propeptide precursor of conotoxin TxVIA. Tex31 requires four residues including a leucine N-terminal of the cleavage site for efficient substrate processing. The sequence of Tex31 was determined using two degenerate PCR primers designed from N-terminal and tryptic digest Edman sequences. A BLAST search revealed that Tex31 was a member of the PR protein superfamily and most closely related to the CRISP family of mammalian proteins that have a cysteine-rich C-terminal tail. A homology model constructed from two PR proteins revealed that the likely catalytic residues in Tex31 fall within a structurally conserved domain found in PR proteins. Thus, it is possible that other PR proteins may also be substrate-specific proteases.
Resumo:
Respiratory syncytial virus (RSV) is a ubiquitous human pathogen and the leading cause of lower respiratory tract infections in infants. Infection of cells and subsequent formation of syncytia occur through membrane fusion mediated by the RSV fusion protein (RSV-F). A novel in vitro assay of recombinant RSV-F function has been devised and used to characterize a number of escape mutants for three known inhibitors of RSV-F that have been isolated. Homology modeling of the RSV-F structure has been carried out on the basis of a chimera derived from the crystal structures of the RSV-F core and a fragment from the orthologous fusion protein from Newcastle disease virus (NDV). The structure correlates well with the appearance of RSV-F in electron micrographs, and the residues identified as contributing to specific binding sites for several monoclonal antibodies are arranged in appropriate solvent-accessible clusters. The positions of the characterized resistance mutants in the model structure identify two promising regions for the design of fusion inhibitors. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Background: Although excessive ethanol consumption is known to lead to a variety of adverse effects in the heart, the molecular mechanisms of such effects have remained poorly defined. We hypothesized that posttranslational covalent binding of reactive molecular species to proteins occurs in the heart in response to acute ethanol exposure. Methods: The generation of protein adducts with several aldehydic species was examined by using monospecific antibodies against adducts with malondialdehyde (MDA), acetaldehyde (AA), MDA-AA hybrids, and hydroxyethyl radicals. Specimens of heart tissue were obtained from rats after intraperitoneal injections with alcohol (75 mmol/kg body weight) with or without pretreatment with cyanamide (0.05 mmol/kg body weight), an aldehyde dehydrogenase inhibitor. Results: The amounts of MDA and unreduced AA adducts were found to be significantly increased in the heart of the rats treated with ethanol, cyanamide, or both, whereas no other adducts were detected in statistically significant quantities. Immunohistochemical studies for characterization of adduct distribution revealed sarcolemmal adducts of both MDA and AA in the rats treated with ethanol and cyanamide in addition to intracellular adducts, which were also present in the group treated with ethanol alone. Conclusions: These findings support the role of enhanced lipid peroxidation and the generation of protein-aldehyde condensates in vivo as a result of excessive ethanol intake. These findings may have implications in the molecular mechanisms of cardiac dysfunction in alcoholics.
Resumo:
Experimental antoimmune encephalomyelitis (EAE) is an organ-specific autoimmune disease characterised by inflammation and demyelination of the central nervous system and is the best available animal model of multiple sclerosis (MS). Since previous studies have shown that EAE is less severe or is delayed in onset during pregnancy and that administration of the pregnancy hormone early pregnancy factor (EPF) down-regulates EAE, experiments in the present study were designed to explore further the role of EPF in EAE. By using the rosette inhibition test, the standard bioassay for EPF and, by semi-quantitative RT-PCR techniques, we have now shown that inflammatory cells from the spinal cord of rats with EAE can produce and secrete EPF, with production being greatest during recovery from disease. Administration of EPF to rats with EAE resulted in a significant increase in the expression of IL-4 and IL-10 mRNA and a significant decrease in IFN-gamma mRNA expression in spinal cord inflammatory cells. Encephalitogenic MBP-specific T cell lines were prepared from popliteal lymph nodes of rats with EAE. Proliferation assays using these cells demonstrated the ability of exogenous EPF to down-regulate the responses of T lymphocytes to MBP. (C) 2003 Elsevier B.V. All rights reserved.