167 resultados para contraction principle
Resumo:
Within the skeletal muscle cell at the onset of muscular contraction, phosphocreatine (PCr) represents the most immediate reserve for the rephosphorylation of adenosine triphosphate (ATP). As a result, its concentration can be reduced to less than 30% of resting levels during intense exercise. As a fall in the level of PCr appears to adversely affect muscle contraction, and therefore power output in a subsequent bout, maximising the rate of PCr resynthesis during a brief recovery period will be of benefit to an athlete involved in activities which demand intermittent exercise. Although this resynthesis process simply involves the rephosphorylation of creatine by aerobically produced ATP (with the release of protons), it has both a fast and slow component, each proceeding at a rate that is controlled by different components of the creatine kinase equilibrium. The initial fast phase appears to proceed at a rate independent of muscle pH. Instead, its rate appears to be controlled by adenosine diphosphate (ADP) levels; either directly through its free cytosolic concentration, or indirectly, through its effect on the free energy of ATP hydrolysis. Once this fast phase of recovery is complete, there is a secondary slower phase that appears almost certainly rate-dependant on the return of the muscle cell to homeostatic intracellular pH. Given the importance of oxidative phosphorylation in this resynthesis process, those individuals with an elevated aerobic power should be able to resynthesise PCr at a more rapid rate than their sedentary counterparts. However, results from studies that have used phosphorus nuclear magnetic resonance (P-31-NMR) spectroscopy, have been somewhat inconsistent with respect to the relationship between aerobic power and PCr recovery following intense exercise. Because of the methodological constraints that appear to have limited a number of these studies, further research in this area is warranted.
Resumo:
Neutrophils constitute 50-60% of all circulating leukocytes; they present the first line of microbicidal defense and are involved in inflammatory responses. To examine immunocompetence in athletes, numerous studies have investigated the effects of exercise on the number of circulating neutrophils and their response to stimulation by chemotactic stimuli and activating factors. Exercise causes a biphasic increase in the number of neutrophils in the blood, arising from increases in catecholamine and cortisol concentrations. Moderate intensity exercise may enhance neutrophil respiratory burst activity, possibly through increases in the concentrations of growth hormone and the inflammatory cytokine IL-6. In contrast, intense or long duration exercise may suppress neutrophil degranulation and the production of reactive oxidants via elevated circulating concentrations of epinephrine (adrenaline) and cortisol. There is evidence of neutrophil degranulation and activation of the respiratory burst following exercise-induced muscle damage. In principle, improved responsiveness of neutrophils to stimulation following exercise of moderate intensity could mean that individuals participating in moderate exercise may have improved resistance to infection. Conversely, competitive athletes undertaking regular intense exercise may be at greater risk of contracting illness. However there are limited data to support this concept. To elucidate the cellular mechanisms involved in the neutrophil responses to exercise, researchers have examined changes in the expression of cell membrane receptors, the production and release of reactive oxidants and more recently, calcium signaling. The investigation of possible modifications of other signal transduction events following exercise has not been possible because of current methodological limitations. At present, variation in exercise-induced alterations in neutrophil function appears to be due to differences in exercise protocols, training status, sampling points and laboratory assay techniques.
Resumo:
Essential hypertension is a common disorder, associated with increased endothelin-l-mediated vasoconstrictor tone at rest. We hypothesized that increased vasoconstrictor activity of endothelin-1 might explain why the normal decrease in peripheral vascular resistance in response to exercise is attenuated in hypertensive patients. Therefore, we investigated the effect of endothelin A (ETA) receptor blockade on the vasodilator response to handgrip exercise. Forearm blood flow responses to handgrip exercise (15%, 30%, and 45% of maximum voluntary contraction) were assessed in hypertensive patients and matched normotensive subjects, before and after intra-arterial infusions of the ETA receptor antagonist BQ-123; a control dilator, hydralazine; and placebo (saline). Preinfusion (baseline) vasodilation in response to exercise was significantly attenuated at each workload in hypertensive patients compared with normotensive subjects. Intra-arterial infusions of hydralazine and saline did not increase the vasodilator response to exercise in either hypertensives or normotensives at any workload. The vasodilator response to exercise was markedly enhanced after BQ-123 at the 2 higher workloads in hypertensives (157 +/- 48%, P < 0.01; 203 &PLUSMN; 58%, P < 0.01) but not in normotensives. This suggests that the impaired vasodilator response to exercise in hypertensive patients is, at least in part, a functional limitation caused by endogenous ETA receptor-mediated vasoconstriction. Treatment with endothelin receptor antagonists may, therefore, increase exercise capacity in essential hypertension.
Resumo:
The purpose of this study was to determine whether or not losses of strength or endurance following eccentric and concentric exercise are associated with reduced excitation. The effects of eccentric and concentric work on maximal voluntary isometric contraction (MVC) and surface electromyogram (EMG) of the quadriceps were studied in 10 healthy male subjects following bench-stepping for 20 min with a constant leading leg. Prior to stepping and at 0, 0.25, 0.50, 0.75, 1, 3. 24 and 48 h afterwards the subjects performed a 30 s leg extension MVC with each leg during which the isometric force and the root mean square voltage of the EMG were recorded. In the eccentrically exercised muscles (ECC), MVC0-3 (force during the first 3 s of contraction) fen immediately after the bench-stepping exercise to 88 +/- 2% (mean SE) of the pre-exercise value and remained significantly lower than the concentrically exercised muscles (p < 0.05). The muscle weakness in the ECC could not be attributed to central fatigue as surface EMG amplitude at MVC0-3 increased during the recovery period. Muscle weakness after eccentric exercise appears to be due to contractile failure, which is not associated with a reduction in excitation as assessed by surface EMG. Muscular fatigue over 30 s did not change in the two muscle groups after exercise (p = 0.79), indicating that the ECC were weaker but not more fatiguable after exercise.
Resumo:
The four-link chain of the motor unit represents the contemporary end-point of some two millennia of evolving knowledge in neuroscience. The paradigm shift in neuromuscular epistemology occurred in the mid-17th century. In 1666, the newly graduated Dutch doctor, Jan Swammerdam (1637-1680) published his former investigations of dissected nerve-muscle preparations. These experiments comprised the quantum leap from observation and speculation, to that of experimentation in the field of neuroanatomy and neurophysiology. In what he termed 'A Curious Experiment' he also described the phenomenon of intrinsic muscle excitability - I cannot observe that the muscle in the living animal ever absolutely ceases from all motion. Eighty years later (1752), von Haller demonstrated experimentally that irritability (contractility) was an intrinsic property of all muscular tissue; and distinguished between the sensibility of nerve impulses and the irritability of muscular contraction. This experimental progression from Swammerdam to von Haller culminated in 1850, when Claude Bernard's studies in experimental pharmacology confirmed that muscle was a functional unit, independent of any electrical innervation via its supplying nerve. This account comprises an audit of Swammerdam's work in the perspective of neuromuscular knowledge. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Radical-mediated oxidative damage of skeletal muscle membranes has been implicated in the fatigue process. Vitamin E (VE) is a major chain breaking antioxidant that has been shown to reduce contraction-mediated oxidative damage. We hypothesized that VE deficiency would adversely affect Muscle contractile function, resulting in a more rapid development of muscular fatigue during exercise. To test this postulate, rats were fed either a VE-deficient (EDEF) diet or a control (CON) diet containing VE. Following a 12-week feeding period, animals were anesthetized and mechanically ventilated. Muscle endurance (fatigue) and contractile properties were evaluated using an in situ preparation of the tibialis anterior (TA) muscle. Contractile properties of the TA muscle were determined before and after a fatigue protocol. The muscle fatigue protocol consisted of 60 min of repetitive contractions (250 ms trains at 15 Hz; duty cycle = I I %) of the TA muscle. Prior to the fatigue protocol, no significant differences existed in the force-frequency curves between EDEF and CON animals. At the completion of the fatigue protocol, muscular force production was significantly (P
Resumo:
1. The present brief review covers some novel aspects of integration between respiration and movement of the body. 2. There are potent viscerosomatic reflexes in animals involving small-diameter pulmonary afferents that, when excited, would limit exercise. However, recent studies using lobeline injections to excite pulmonary afferents in awake humans suggest that there is no evoked reflex motoneuronal inhibition. Instead, the noxious respiratory sensations generated by the vagal afferents may be crucial in the decision to stop exercise. 3. While respiratory movements may affect limb movements, the control of the trunk and limbs can involve interaction (and even interference) with key respiratory muscles, such as the diaphragm. Recent studies have revealed that not only does the diaphragm receive feed-forward drive prior to some limb movements, but that it also contracts both phasically and tonically during repetitive limb movements. 4. Thus, challenges to posture can indirectly challenge ventilation, while coordinated diaphragm contraction may contribute to control of the trunk.
Resumo:
It has long been supposed that the interference observed in certain patterns of coordination is mediated, at least in part, by peripheral afference from the moving limbs. We manipulated the level of afferent input, arising from movement of the opposite limb, during the acquisition of a complex coordination task. Participants learned to generate flexion and extension movements of the right wrist, of 75degrees amplitude, that were a quarter cycle out of phase with a 1-Hz sinusoidal visual reference signal. On separate trials, the left wrist either was at rest, or was moved passively by a torque motor through 50degrees, 75degrees or 100degrees, in synchrony with the reference signal. Five acquisition sessions were conducted on successive days. A retention session was conducted I week later. Performance was initially superior when the opposite limb was moved passively than when it was static. The amplitude and frequency of active movement were lower in the static condition than in the driven conditions and the variation in the relative phase relation across trials was greater than in the driven conditions. In addition, the variability of amplitude, frequency and the relative phase relation during each trial was greater when the opposite limb was static than when driven. Similar effects were expressed in electromyograms. The most marked and consistent differences in the accuracy and consistency of performance (defined in terms of relative phase) were between the static condition and the condition in which the left wrist was moved through 50degrees. These outcomes were exhibited most prominently during initial exposure to the task. Increases in task performance during the acquisition period, as assessed by a number of kinematic variables, were generally well described by power functions. In addition, the recruitment of extensor carpi radialis (ECR), and the degree of co-contraction of flexor carpi radialis and ECR, decreased during acquisition. Our results indicate that, in an appropriate task context, afferent feedback from the opposite limb, even when out of phase with the focal movement, may have a positive influence upon the stability of coordination.
Resumo:
Principle issues considered in Australian Broadcasting Corporation v Lenah Game Meats Pty Ltd - whether it was necessary to show a cause of action for an interlocutory injunction to be granted - whether a right to privacy existed - whether the ABC was protected in this case by an implied constitutional freedom - majority rejected a wide interpretation on grounds upon which an interlocutory injunction could be granted - recognition of the possibility of a tort of invasion of privacy under Australian law by five of the six judges.
Resumo:
As in eutherians, maturation of the fetal pituitary and adrenal glands together with an increase in prostaglandin and mesotocin or oxytocin production initiates birth in marsupials. in this study, prostaglandin (Lutalyse) or oxytocin (Syntocinon) were administered to pregnant bandicoots at 05:00 h on the calculated day of birth and the resultant effects were filmed for analysis. The administration of prostaglandin caused the bandicoot to adopt the birth position several minutes after injection (n = 2). However, the bandicoot did not give birth for several hours. Birth occurred at a similar time of day to that observed for untreated bandicoots (n = 7), between 08:00 h and 12:00 h. After an injection of oxytocin, the bandicoot assumed the birth position and birth occurred within several minutes. The young were alive while still connected to their allantoic stalks. However, they were unable to attach to the teats and did not survive (n = 4). The induced young were the colour of venous blood and died soon after the umbilicus was separated, indicating that the cardiopulmonary system of these neonates was underdeveloped and inadequate to maintain life. The results from this study demonstrate that prostaglandin is required to prepare the bandicoot for birth, and mesotocin is required for contraction of the uterus and for birth to occur.
Resumo:
Head-to-tail cyclic peptides have been reported to bind to multiple, unrelated classes of receptor with high affinity. They may therefore be considered to be privileged structures. This review outlines the strategies by which both macrocyclic cyclic peptides and cyclic dipeptides or diketopiperazines have been synthesised in combinatorial libraries. It also briefly outlines some of the biological applications of these molecules, thereby justifying their inclusion as privileged structures.
Resumo:
Poultry can be managed under different feeding systems, depending on the husbandry skills and the feed available. These systems include the following: (1) a complete dry feed offered as a mash ad libitum; (2) the same feed offered as pellets or crumbles ad libitum; (3) a complete feed with added whole grain; (4) a complete wet feed given once or twice a day; (5) a complete feed offered on a restricted basis; (6) choice feeding. Of all these, an interesting alternative to offering complete diets is choice feeding which can be applied on both a small or large commercial scale. Under choice feeding or free-choice feeding birds are usually offered a choice between three types of feedstuffs: (a) an energy source (e.g. maize, rice bran, sorghum or wheat); (b) a protein source (e.g. soyabean meal, meat meal, fish meal or coconut meal) plus vitamins and minerals and (c), in the case of laying hens, calcium in granular form (i.e. oyster-shell grit). This system differs from the modern commercial practice of offering a complete diet comprising energy and protein sources, ground and mixed together. Under the complete diet system, birds are mainly only able to exercise their appetite for energy. When the environmental temperature varies, the birds either over- or under-consume protein and calcium. The basic principle behind practising choice feeding with laying hens is that individual hens are able to select from the various feed ingredients on offer and compose their own diet, according to their actual needs and production capacity. A choice-feeding system is of particular importance to small poultry producers in developing countries, such as Indonesia, because it can substantially reduce the cost of feed. The system is flexible and can be constructed in such a way that the various needs of a flock of different breeds, including village chickens, under different climates can be met. The system also offers a more effective way to use home-produced grain, such as maize, and by-products, such as rice bran, in developing countries. Because oyster-shell grit is readily available in developing countries at lower cost than limestone, the use of cheaper oyster-shell grit can further benefit small-holders in these countries. These benefits apart, simpler equipment suffices when designing and building a feed mixer on the farm, and transport costs are lower. If whole (unground) grain is used, the intake of which is accompanied by increased efficiency of feed utilisation, the costs of grinding, mixing and many of the handling procedures associated with mash and pellet preparation are eliminated. The choice feedstuffs can all be offered in the current feed distribution systems, either by mixing the ingredients first or by using a bulk bin divided into three compartments.
Resumo:
Purpose: The aims of the present study were to examine electromyographic (EMG) activity of six bilateral trunk muscles during maximal contraction in three cardinal planes, and to determine the direction of contraction that gives maximal activation for each muscle. both for healthy subjects and back-pain patients. Methods: Twenty-eight healthy subjects and 15 back-pain patients performed maximum voluntary contractions in three cardinal planes, Surface EMG signals were recorded from rectus abdominis, external oblique, internal oblique, latissimus dorsi, iliocostalis lumborum, and multifidus bilaterally. Root mean square values of the EMG data were calculated to quantify I the amplitude of EMG signals. Results: For both healthy subjects and back-pain patients. one single direction of contraction was found to give the maximum EMG signals for most muscles. Rectus abdominis demonstrated maximal activity in trunk flexion, external oblique in lateral flexion. internal oblique in axial rotation, and multifidus in extension. For the latissimus dorsi and iliocostalis lumborum. maximal activity was demonstrated in more than one cardinal plane. Conclusion: This study has implications for future research involving normalization of muscle activity to maximal levels required in many trunk EMG studies. As the latissimus dorsi and iliocostalis lumborum demonstrate individual differences in the plane that gives maximal activity, these muscles may require testing in more than one plane.
Resumo:
In the first part of this study, we characterized 24-month-old Wistar Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs), their heart weights, and the responses of the isolated left ventricles to electrical stimulation. In the main part of the study, we tested whether the positive inotropic effects of BDF 9198, which prevents the closure of the cardiac sodium channel, were present in senescence and heart failure. Thus, we studied the effects of BDF 9198 on the left ventricle strips of 24-month-old WKY rats (senescence) and SHRs using contractility methods. In comparison with WKY rats, the left ventricles of 24-month-old SHRs were hypertrophied and had prolonged times to peak contraction. BDF 9198 (10(-8) to 10(-6) m) was a positive inotrope on the left ventricles of WKY rats, with a maximum augmenting effect of 122% with BDF 9198 at 10(-7) m. The magnitude of the augmenting effects of BDF 9198 were reduced in SHR heart failure, with a maximum augmenting effect of 26% at 10(-7) m. BDF 9198 at 10(-6) m attenuated the responses of the SHR left ventricle to electrical stimulation. In conclusion, the potential of drugs that prevent closure of the sodium channel as positive inotropes in the treatment of heart failure should be further considered.
Resumo:
The aim was to test whether dofetilide has some potential for use in the treatment of heart failure. Dofetilide at less than or equal to 3 x 10(-5) m had no effect on the quiescent Wistar Kyoto (WKY) rat aorta, mesenteric and intralobar arteries, or the spontaneous contractions of the WKY rat portal vein. Dofetilide at 10(-6) to 3 x 10(-5) m relaxed the KCl-contracted aorta. Dofetilide at 10(-9)-10(-7) m augmented the force of contraction of left ventricle strips from 12- and 18-month-old WKY rats at 2 Hz. Spontaneously hypertensive rats (SHRs) at 12 and 17-21 months of age are models of cardiac hypertrophy and failure, respectively. The augmentation of force at 2 Hz with dofetilide was similar on 12- and 18-month-old WKY rats and 12-month-old SHRs but reduced on the 18-month-old SHR left ventricle. At a higher more physiological frequency, 4 Hz, the threshold concentration of dofetilide required to augment the force responses of 21-month-old SHR left ventricles was markedly increased and the maximum augmenting effect was decreased. Dofetilide at 10(-7)-10(-5) m reduced the rate of the 17-month-old WKY rat right atrium, and had a similar effect on age-matched SHR right atrium. In summary, dofetilide is a positive inotrope and negative chronotrope in the rat. However, as the positive inotropic effect is not observed with clinically relevant concentrations at a physiological rate in heart failure, dofetilide is unlikely to be useful as a positive inotrope in the treatment of heart failure.