264 resultados para biophysics
Resumo:
Grass pollen is an important risk factor for allergic rhinitis and asthma in Australia and is the most prevalent pollen component of the aerospora of Brisbane, accounting for 71.6% of the annual airborne pollen load. A 5-year (June 1994-May 1999) monitoring program shows the grass pollen season to occur during the summer and autumn months (December-April), however the timing of onset and intensity of the season vary from year to year. During the pollen season, Poaceae counts exceeding 30 grains m(-3) were recorded on 244 days and coincided with maximum temperatures of 28.1 +/- 2.0degreesC. In this study, statistical associations between atmospheric grass pollen loads and several weather parameters, including maximum temperature, minimum temperature and precipitation, were investigated. Spearman's correlation analysis demonstrated that daily grass pollen counts were positively associated (P < 0.0001) with maximum and minimum temperature during each sampling year. Precipitation, although considered a less important daily factor (P < 0.05), was observed to remove pollen grains from the atmosphere during significant periods of rainfall. This study provides the first insight into the influence of meteorological variables, in particular temperature, on atmospheric Poaceae pollen counts in Brisbane. An awareness of these associations is critical for the prevention and management of allergy and asthma for atopic individuals within this region.
Resumo:
The purpose of this investigation was to evaluate the impact of undertaking peripheral blood stem cell transplantation (PBST) on quality of life (QoL), and to determine the effect of participating in a mixed-type, moderate-intensity exercise program on QoL. It was also an objective to determine the relationship between peak aerobic capacity and QoL in PBST patients. QoL was assessed via the CARES questionnaire and peak aerobic capacity by a maximal graded treadmill test, pretransplant (PI), post transplant (PII) and following a 12-week intervention period (PIII). At PII, 12 patients were divided equally into a control or exercise intervention group. Undergoing a PBST was associated with a statistically but not clinically significant decline in QoL (P < 0.05). Following the intervention, exercising patients demonstrated an improved QoL when compared with pretransplant ratings (P < 0.01) and nonexercising transplant patients (P < 0.05). Moreover, peak aerobic capacity and QoL were correlated (P < 0.05). The findings demonstrated that exercise participation following oncology treatment is associated with a reduction in the number and severity of endorsed problems, which in turn leads to improvements in global, physical and psychosocial QoL. Furthermore, a relationship between fitness and QoL exists, with those experiencing higher levels of fitness also demonstrating higher QoL.
Resumo:
Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) catalyses the formation of 2-acetolactate and 2-aceto-2-hydroxybutyrate as the first step in the biosynthesis of the branched-chain amino acids valine, leucine and isoleucine. The enzyme is inhibited by a wide range of substituted sulfonylureas and imidazolinones and many of these compounds are used as commercial herbicides. Here, the crystallization and preliminary X-ray diffraction analysis of the catalytic subunit of Arabidopsis thaliana AHAS in complex with the sulfonylurea herbicide chlorimuron ethyl are reported. This is the first report of the structure of any plant protein in complex with a commercial herbicide. Crystals diffract to 3.0 Angstrom resolution, have unit-cell parameters a = b = 179.92, c = 185.82 Angstrom and belong to space group P6(4)22. Preliminary analysis indicates that there is one monomer in the asymmetric unit and that these are arranged as pairs of dimers in the crystal. The dimers form a very open hexagonal lattice, with a high solvent content of 81%.
Resumo:
Ketol-acid reductoisomerase (EC 1.1.1.86) catalyses the second reaction in the biosynthesis of branched-chain amino acids. The reaction involves an Mg2+-dependent alkyl migration followed by an NADPH-dependent reduction of the 2-keto group. Here, the crystallization of the Escherichia coli enzyme is reported. A form with a C-terminal hexahistidine tag could be crystallized under 18 different conditions in the absence of NADPH or Mg2+ and a further six crystallization conditions were identified with one or both ligands. With the hexahistidine tag on the N-terminus, 20 crystallization conditions were found, some of which required the presence of NADPH, NADP(+), Mg2+ or a combination of ligands. Finally, the selenomethionine-substituted enzyme with the N-terminal tag crystallized under 15 conditions. Thus, the enzyme is remarkably easy to crystallize. Most of the crystals diffract poorly but several data sets were collected at better than 3.2 Angstrom resolution; attempts to phase them are currently in progress.
Resumo:
The folding of HIV gp41 into a 6-helix bundle drives virus-cell membrane fusion. To examine the structural relationship between the 6-helix bundle core domain and other regions of gp41, we expressed in Escherichia coli, the entire ectodomain of HIV-2(ST) gp41 as a soluble, trimeric maltose-binding protein (MBP)/gp41 chimera. Limiting proteolysis indicated that the Cys-591-Cys-597 disulfide-bonded region is outside a core domain comprising two peptides, Thr-529-Trp-589 and Val-604-Ser-666. A biochemical examination of MBP/gp41 chimeras encompassing these core peptides; indicated that the N-terminal polar segment, 521-528, and C-terminal membrane-proximal segment, 658-666, cooperate in stabilizing the ectodomain. A functional interaction between sequences outside the gp41 core may contribute energy to membrane fusion. (C) 2004 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
Translational pausing may occur due to a number of mechanisms, including the presence of non-optimal codons, and it is thought to play a role in the folding of specific polypeptide domains during translation and in the facilitation of signal peptide recognition during see-dependent protein targeting. In this whole genome analysis of Escherichia coli we have found that non-optimal codons in the signal peptide-encoding sequences of secretory genes are overrepresented relative to the mature portions of these genes; this is in addition to their overrepresentation in the 5'-regions of genes encoding non-secretory proteins. We also find increased non-optimal codon usage at the 3' ends of most E. coli genes, in both non-secretory and secretory sequences. Whereas presumptive translational pausing at the 5' and 3' ends of E. coli messenger RNAs may clearly have a general role in translation, we suggest that it also has a specific role in sec-dependent protein export, possibly in facilitating signal peptide recognition. This finding may have important implications for our understanding of how the majority of non-cytoplasmic proteins are targeted, a process that is essential to all biological cells. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
As a response to recent expression of concern about possible unreliability of vapor pressure deficit measurements K Kiyosawa, Biophys. Chem. 104 (2003) 171-188), the results of published studies on the temperature dependence of the osmotic pressure of aqueous polyethylene glycol solutions are shown to account for the observed discrepancies between osmolality estimates obtained by freezing point depression and vapor pressure deficit osmometry - the cause of the concern. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Measurement of the temperature-dependence of thrombin-catalyzed cleavage of the Arg(155)-Ser(156) and Arg(284)-Thr(285) peptide bonds in prothrombin and prothrombin-derived substrates has yielded Arrhenius parameters that are far too large for classical mechanistic interpretation in terms of a simple hydrolytic reaction. Such a difference from the kinetic behavior exhibited in trypsin- and chymotrypsin-catalyzed proteolysis of peptide bonds is attributed to contributions by enzyme exosite interactions as well as enzyme conformational equilibria to the magnitudes of the experimentally determined Arrhenius parameters. Although the pre-exponential factor and the energy of activation deduced from the temperature-dependence of rate constants for proteolysis by thrombin cannot be accorded the usual mechanistic significance, their evaluation serves a valuable role by highlighting the existence of contributions other than those emanating from simple peptide hydrolysis to the kinetics of proteolysis by thrombin and presumably other enzymes of the blood coagulation system. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Attention is drawn to the feasibility of using isothermal calorimetry for the characterization of enzyme reactions under conditions bearing greater relevance to the crowded biological environment, where kinetic parameters are likely to differ significantly from those obtained by classical enzyme kinetic studies in dilute solution. An outline of the application of isothermal calorimetry to the determination of enzyme kinetic parameters is followed by considerations of the nature and consequences of crowding effects in enzyme catalysis. Some of those effects of thermodynamic non-ideality are then illustrated by means of experimental results from calorimetric studies of the effect of molecular crowding on the kinetics of catalysis by rabbit muscle pyruvate kinase. This review concludes with a discussion of the potential of isothermal calorimetry for the experimental determination of kinetic parameters for enzymes either in biological environments or at least in media that should provide reasonable approximations of the crowded conditions encountered in vivo. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
Crystals of purified heterodimeric sulfite dehydrogenase from Starkeya novella have been grown using vapour diffusion. X-ray diffraction data have been collected from crystals of the native protein at lambda=1.0 Angstrom and close to the iron absorption edge at lambda=1.737 Angstrom. The crystals belong to space group P2(1)2(1)2, with unit-cell parameters a=97.5, b=92.5, c=55.9 Angstrom. Native data have been recorded to 1.8 Angstrom resolution and Fe-edge data to 2.5 Angstrom.
Resumo:
The aim of the present study was to compare the protein-free diet, guanidinated casein (GuC) and enzyme hydrolysed casein (EHC) methods for the quantification of endogenous amino acid (AA) flow in the avian ileum. Growing broiler chickens (5 weeks old) were used. All three assay diets were based on dextrose, and in the GuC and EHC diets GuC or EHC were the sole source of N. Endogenous AA flows determined with the use of protein-free diet were considerably lower (P < 0.05) than those determined by the GuC and EHC methods. The, total endogenous AA flows determined by the GuC and EHC methods were almost 3-fold greater (P < 0.05) than those determined by the protein-free diet. The endogenous AA values obtained from GuC and EHC methods were similar (P >0.05), except for the flow of arginine, which was lower (P < 0.05) in the EHC method. Glutamic acid, aspartic acid, threonine and glycine were the predominant endogenous AA present in digesta from the distal ileum. The contents of methionine, histidine and cystine were lower compared with other AA. The method of determination had no effect on the AA composition of endogenous protein, except for threonine, glutamic acid, lysine, arginine and cystine. The concentrations of threonine and arginine were lower (P < 0.05) and that of lysine was higher (P < 0.05) with the EHC method compared with the other two methods. The concentration of glutamic acid was greater (P < 0.05) and that of cystine was lower (P < 0.05) in the EHC and GuC methods compared with the protein-free diet method. The results showed that the ileal endogenous flows of N and AA are markedly enhanced by the presence of protein and peptides, above those determined following feeding of a protein-free diet. It is concluded that the use of EHC and GuC methods enables the measurement of ileal endogenous losses in chickens under normal physiological conditions.
Resumo:
Transporters of Ca2+ are potential drug targets and Ca2+ is a useful signal in the assessment of G-protein-coupled receptor activation. Assays involving the assessment of intracellular Ca2+ using microplate readers most often use Ca2+ indicators which do not exhibit a spectra shift on Ca2+ binding (e.g. fluo-3). Indicators that do exhibit a spectral shift upon Ca2+ binding (e.g. fura-2) offer potential advantages for the calibration of intracellular Ca2+ levels. However, experimental limitations may limit the use of ratiometric dyes in microplate readers capable of screening. In this study, we compared the assessment of intracellular Ca2+ in adherent breast cancer cells using ratiometric and nonratiometric Ca2+ indicators. Our results demonstrate that both fluo-3 and fura-2 detect ATP dose-dependent increases in intracellular Ca2+ in the MCF-7 breast cancer cell line and that some of the limitations in the use of fura-2 appear to be overcome by the use of glass bottom microplates. The calibrated intracellular Ca2+ levels derived using fura-2 are consistent with those from microscopy and cuvette-based studies. Fura-2 may be useful in microplate studies, where cell lines with different properties are compared or where screening treatments lead to differences in the number of cells or dye loading. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In dimethylsulfoxide reductase of Rhodobacter capsulatus tryptophan-116 forms a hydrogen bond with a single oxo ligand bound to the molybdenum ion. Mutation of this residue to phenylalanine affected the UV/visible spectrum of the purified Mo-VI form of dimethylsulfoxide reductase resulting in the loss of the characteristic transition at 720 nm. Results of steady-state kinetic analysis and electrochemical studies suggest that tryptophan 116 plays a critical role in stabilizing the hexacoordinate monooxo Mo-VI form of the enzyme and prevents the formation of a dioxo pentacoordinate Mo-VI species, generated as a consequence of the dissociation of one of the dithiolene ligands of the molybdopterin cofactor from the Mo ion. (C) 2004 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
The inhibition of E2F has been demonstrated to be important in the initiation of squamous differentiation by two independent manners: promotion of growth arrest and the relief of the differentiation-suppressive properties of E2Fs. E2F6 is reported to behave as a transcriptional repressor of the E2F family. In this study, we examined the ability of E2F6 to act as the molecular switch required for E2F inhibition in order for keratinocytes to enter a terminal differentiation programme. Results demonstrated that whilst E2F6 was able to suppress E2F activity in proliferating keratinocytes, it did not modulate squamous differentiation in a differentiated keratinocyte. Furthermore, inhibition of E2F, by overexpressing E2F6, was not sufficient to sensitise either proliferating keratinocytes or the squamous cell carcinoma cell line, KJD-1/SV40, to differentiation-inducing agents. Significantly, although E2F6 could suppress E2F activity in proliferating cells, it could not inhibit proliferation of KJD-1/SV40 cells. These results demonstrate that E2F6 does not contain the domains required for modulation of squamous differentiation and imply isoform-specific functions for individual E2F family members. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Purple acid phosphatases are metal-containing hydrolases. While their precise biological role(s) is unknown, the mammalian enzyme has been linked in a variety of biological circumstances (e.g., osteoporosis) with increased bone resorption. Inhibition of the human enzyme is a possible strategy for the treatment of bone-resorptive diseases such as osteoporosis. Previously, we determined the crystal structure of pig purple acid phosphatase to 1.55 Angstrom and we showed that it is a good model for the human enzyme. Here, a study of the pH dependence of its kinetic parameters showed that the pig enzyme is most efficient at pH values similar to those encountered in the osteoclast resorptive space. Based on the observation that phosphotyrosine-containing peptides are good substrates for pig purple acid phosphatase, peptides containing a range of phosphotyrosine mimetics were synthesized. Kinetic analysis showed that they act as potent inhibitors of mammalian and plant purple acid phosphatases, with the best inhibitors exhibiting low micromolar inhibition constants at pH 3-5. These compounds are thus the most potent organic inhibitors yet reported for the purple acid phosphatases. (C) 2004 Published by Elsevier Inc.