140 resultados para adrenoceptor antagonist idazoxan
Resumo:
Aims: This study was designed to investigate the influence of angiotensin II (Ang II) and nitric oxide (NO) on autoregulation of renal perfusion. Methods: Autoregulation was investigated in isolated perfused kidneys (IPRK) from Sprague-Dawley rats during stepped increases in perfusion pressure. Results: Ang II (75-200 pM) produced dose-dependent enhancement of autoregulation whereas phenylephrine produced no enhancement and impaired autoregulation of GFR. Enhancement by Ang II was inhibited by the AT(1) antagonist, Losartan, and the superoxide scavenger, Tempol. Under control conditions nitric oxide synthase (NOS) inhibition by 10 muM N-omega-nitro-L-arginine methyl ester (L-NAME) facilitated autoregulation in the presence of non-specific cyclooxygenase (COX) inhibition by 10 muM indomethacin. Both COX and combined NOS/COX inhibition reduced the autoregulatory threshold concentration of Ang II. Facilitation by 100 pM Ang II was inhibited by 100 muM frusemide. Methacholine (50 nM) antagonised Ang II-facilitated autoregulation in the presence and absence of NOS/COX inhibition. Infusion of the NO donor, 1 muM sodium nitroprusside, inhibited L-NAME enhancement of autoregulation under control conditions and during Ang II infusion. Conclusions: The results suggest than an excess of NO impairs autoregulation under control conditions in the IPRK and that endogenous and exogenous NO, vasodilatory prostaglandins and endothelium-derived hyperpolarizing factor (EDHF) activity antagonise Ang II-facilitated autoregulation. Ang II also produced a counterregulatory vasodilatory response that included prostaglandin and NO release. We suggest that Ang II facilitates autoregulation by a tubuloglomerular feedback-dependent mechanism through AT(1) receptor-mediated depletion of nitric oxide, probably by stimulating generation of superoxide.
Resumo:
This review considers the considerable similarities between periodontal disease and rheumatoid arthritis (RA). While the etiology of these two diseases may differ, the underlying pathogenic mechanisms are remarkably similar and it is possible that individuals manifesting both periodontitis and RA may suffer from a unifying underlying systemic dysregulation of the inflammatory response. In light of these findings, the implications for the use of disease-modifying medications in the management of these two chronic inflammatory conditions is apparent. Further longitudinal studies and medication-based intervention studies are required to determine just how closely these two conditions are allied.
Resumo:
The Crim1 gene is predicted to encode a transmembrane protein containing six von Willebrand-like cysteine-rich repeats (CRRs) similar to those in the BMP-binding antagonist Chordin (Chrd). In this study, we verify that CRIM1 is a glycosylated, Type I transmembrane protein and demonstrate that the extracellular CRR-containing domain can also be secreted, presumably via processing at the membrane. We have previously demonstrated Crim1 expression at sites consistent with an interaction with bone morphogenetic proteins (BMPs). Here we show that CRIM1 can interact with both BMP4 and BMP7 via the CRR-containing portion of the protein and in so doing acts as an antagonist in three ways. CRIM1 binding of BMP4 and -7 occurs when these proteins are co-expressed within the Golgi compartment of the cell and leads to (i) a reduction in the production and processing of preprotein to mature BMP, (ii) tethering of pre-BMP to the cell surface, and (iii) an effective reduction in the secretion of mature BMP. Functional antagonism was verified by examining the effect of coexpression of CRIM1 and BMP4 on metanephric explant culture. The presence of CRIM1 reduced the effective BMP4 concentration of the media, thereby acting as a BMP4 antagonist. Hence, CRIM1 modulates BMP activity by affecting its processing and delivery to the cell surface
Resumo:
The effects of the native alpha-conotoxin PnIA, its synthetic derivative [ A10L] PnIA and alanine scan derivatives of [ A10L] PnIA were investigated on chick wild type alpha7 and alpha7-L247T mutant nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes. PnIA and [A10L] PnIA inhibited acetylcholine (ACh)-activated currents at wtalpha7 receptors with IC50 values of 349 and 168 nM, respectively. Rates of onset of inhibition were similar for PnIA and [ A10L] PnIA; however, the rate of recovery was slower for [ A10L] PnIA, indicating that the increased potency of [ A10L] PnIA at alpha7 receptors is conveyed by its slower rate of dissociation from the receptors. All the alanine mutants of [ A10L] PnIA inhibited ACh-activated currents at wtalpha7 receptors. Insertion of an alanine residue between position 5 and 13 and at position 15 significantly reduced the ability of [ A10L] PnIA to inhibit ACh-evoked currents. PnIA inhibited the non-desensitizing ACh-activated currents at alpha7-L247T receptors with an IC50 194 nM. In contrast, [ A10L] PnIA and the alanine mutants potentiated the ACh-activated current alpha7-L247T receptors and in addition [ A10L] PnIA acted as an agonist. PnIA stabilized the receptor in a state that is non-conducting in both the wild type and mutant receptors, whereas [ A10L] PnIA stabilized a state that is non-conducting in the wild type receptor and conducting in the alpha7-L247T mutant. These data indicate that the change of a single amino acid side-chain, at position 10, is sufficient to change the toxin specificity for receptor states in the alpha7-L247T mutant.