143 resultados para West syndrome
Resumo:
We evaluated the ability of epitope-blocking enzyme-linked immunosorbent assays (ELISAs) to detect West Nile virus (WNV) antibodies in domestic mammals. Sera were collected from experimentally infected horses, cats, and pigs at regular intervals and screened in ELISAs and plaque reduction neutralization tests. The diagnostic efficacies of these techniques were similar.
Resumo:
China holds the key to solving many questions crucial to global control of severe acute respiratory syndrome (SARS). The disease appears to have originated in Guangdong Province, and the causative agent, SARS coronavirus, is likely to have originated from an animal host, perhaps sold in public markets. Epidemiologic findings, integral to defining an animal-human linkage, may be confirmed by laboratory studies; once animal host(s) are confirmed, interventions may be needed to prevent further animal-to-human transmission. Community seroprevalence studies may help determine the basis for the decline in disease incidence in Guangdong Province after February 2002. China will also be able to contribute key data about how the causative agent is transmitted and how it is evolving, as well as identifying pivotal factors influencing disease outcome.
Resumo:
Our previous studies have shown that two distinct genotypes of Sindbis (SIN) virus occur in Australia. One of these, the Oriental/Australian type, circulates throughout most of the Australian continent, whereas the recently identified south-west (SW) genetic type appears to be restricted to a distinct geographic region located in the temperate south-west of Australia. We have now determined the complete nucleotide and translated amino acid sequences of a SW isolate of SIN virus (SW6562) and performed comparative analyses with other SIN viruses at the genomic level. The genome of SW6562 is 11,569 nucleotides in length, excluding the cap nucleotide and poly (A) tail. Overall this virus differs from the prototype SIN virus (strain AR339) by 23% in nucleotide sequence and 12.5% in amino acid sequence. Partial sequences of four regions of the genome of four SW isolates were determined and compared with the corresponding sequences from a number of SIN isolates from different regions of the World. These regions are the non-structural protein (nsP3), the E2 gene, the capsid gene, and the repeated sequence elements (RSE) of the 3'UTR. These comparisons revealed that the SW SIN viruses were more closely related to South African and European strains than to other Australian isolates of SIN virus. Thus the SW genotype of SIN virus may have been introduced into this region of Australia by viremic humans or migratory birds and subsequently evolved independently in the region. The sequence data also revealed that the SW genotype contains a unique deletion in the RSE of the 3'UTR region of the genome. Previous studies have shown that deletions in this region of the SIN genome can have significant effects on virus replication in mosquito and avian cells, which may explain the restricted distribution of this genotype of SIN virus.
Resumo:
A blocking ELISA targeting an immunodominant West Nile epitope on the West Nile Virus NS1 protein was assessed for the detection of West Nile-specific antibodies in blood samples collected from 584 sentinel chickens and 238 wild birds collected in-New Jersey from May-December 2000. Ten mallard ducks (Anas platyrhynchos) experimentally infected with West Nile virus and six uninfected controls were also tested. The ELISA proved specific in detecting WNV antibodies in 9/10 chickens and 4/4 wild birds previously confirmed as positive by Plaque Reduction Neutralization test (PRNT) at the Center for Disease Control, Division of Vector Borne Diseases, Fort Collins, CO, USA (CDC). Nine out of the ten experimentally infected mallard ducks also tested positive for WN antibodies in the blocking ELISA, while 6/6 uninfected controls did not. Additionally, 1705 wild birds, collected in New Jersey from December 2000-November 2001 and Long Island, New York between November 1999 and August 2001 were also tested for WN antibodies by the blocking ELISA. These tests identified 30 positive specimens, 12 of which had formalin-fixed tissues available to allow detection of WN specific viral antigen in various tissues by WNV-specific immunohistochemistry. Our results indicate that rapid and specific detection of antibodies to WN virus in sera from a range of avian species by blocking ELISA is an effective strategy for WN Virus surveillance in avian hosts. In combination with detection of WN-specific antigens in tissues by immunohistochemistry (IHC) the blocking ELISA will also be useful for confirming WN infection in diseased birds.
Resumo:
Mental retardation in individuals with Down syndrome (DS) is thought to result from anomalous development and function of the brain; however, the underlying neuropathological processes have yet to be determined. Early implementation of special care programs result in limited, and temporary, cognitive improvements in DS individuals. In the present study, we investigated the possible neural correlates of these limited improvements. More specifically, we studied cortical pyramidal cells in the frontal cortex of Ts65Dn mice, a partial trisomy of murine chromosome 16 (MMU16) model characterized by cognitive deficits, hyperactivity, behavioral disruption and reduced attention levels similar to those observed in DS, and their control littermates. Animals were raised either in a standard or in an enriched environment. Environmental enrichment had a marked effect on pyramidal cell structure in control animals. Pyramidal cells in environmentally enriched control animals were significantly more branched and more spinous than non-enriched controls. However, environmental enrichment had little effect on pyramidal cell structure in Ts65Dn mice. As each dendritic spine receives at least one excitatory input, differences in the number of spines found in the dendritic arbors of pyramidal cells in the two groups reflect differences in the number of excitatory inputs they receive and, consequently, complexity in cortical circuitry. The present results suggest that behavioral deficits demonstrated in the Ts65Dn model could be attributed to abnormal circuit development.
Resumo:
Despite widespread awareness that children with Down syndrome are particularly susceptible to hearing pathologies, the audiological status of students with Down syndrome in special schools is all too often unknown. Unfortunately, hearing screening for this population is unable to rely on standard, behavioural test batteries. To facilitate future improvements in screening protocols, this study investigated the results of tympanometry and transient evoked otoacoustic emission (TEOAE) testing for a group of children with Down syndrome. Assessments were not conducted in the artificial context of a clinic or laboratory, but within the school environment. Outcomes are reported for 27 subjects with a mean age of 10 years 5 months (SD = 4;11). Tympanometry testing was failed in at least one ear by 41.7% of subjects, while a failure rate of 81.5% of subjects was observed for TEOAE testing. Therefore, it is concluded that immediate review of hearing screening programs for students with Down syndrome is highly advisable.