138 resultados para Universal generating function


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As survival of patients with CF increases,glucose intolerance and cystic fibrosisrelated diabetes (CFRD),ar e increasingly recognised common complications. CFRD may be preceded by a pre-diabetic state. Using markers identified as being associated with CFRD may improve targeted screening. Aim: To identify features consistently predicting CFRD in paediatric patients. Patients diagnosed with CFRD between January 1997–January 2002 were compared with age and sex matched controls. Clinical,micr obiological, and hospitalisation data was collected at time of CFRD diagnosis,and at six monthly intervals for 3 yr prior to diagnosis. Eight patients with CFRD were identified,mean age 13.7 yr (S.D. 3.49) at time of diagnosis. Control patients underwent OGTT to ensure normal glucose tolerance. Patients with CFRD had a lower FEV1 up to 12 months prior to diagnosis however, this was only significant at diagnosis. There was no difference in weight and height z scores between the 2 groups; however,the decrease in weight and height z scores in the CFRD group over 3 yr prior to diagnosis was significant. Mean number of days in hospital and admissions per patient significantly increased in the CFRD group,6 months prior to diagnosis. No other significant differences were observed between the 2 groups. Conclusions: This study has shown a difference in lung function,gr owth parameters and frequency of hospital admissions between patients with CFRD and controls. These differences may be utilised as tools for targeted screening in the paediatricyadolescent population. Further larger scale studies are required to improve guidelines for targeted screening in this population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray reflectivity of bovine and sheep surfactant-associated protein B (SP-B) monolayers is used in conjunction with pressure-area isotherms and protein models to suggest that the protein undergoes changes in its tertiary structure at the air/water interface under the influence of surface pressure, indicating the likely importance of such changes to the phenomena of protein squeeze out as well as lipid exchange between the air-water interface and subphase structures. We describe an algorithm based on the well-established box- or layer-models that greatly assists the fitting of such unknown scattering-length density profiles, and which takes the available instrumental resolution into account. Scattering-length density profiles from neutron reflectivity of bovine SP-B monolayers on aqueous subphases are shown to be consistent with the exchange of a large number of labile protons as well as the inclusion of a significant amount of water, which is partly squeezed out of the protein monolayer at elevated surface pressures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arguably the most complex conical functions are seated in human cognition, the how and why of which have been debated for centuries by theologians, philosophers and scientists alike. In his best-selling book, An Astonishing Hypothesis: A Scientific Search for the Soul, Francis Crick refined the view that these qualities are determined solely by cortical cells and circuitry. Put simply, cognition is nothing more, or less, than a biological function. Accepting this to be the case, it should be possible to identify the mechanisms that subserve cognitive processing. Since the pioneering studies of Lorent de No and Hebb, and the more recent studies of Fuster, Miller and Goldman-Rakic, to mention but a few, much attention has been focused on the role of persistent neural activity in cognitive processes. Application of modern technologies and modelling techniques has led to new hypotheses about the mechanisms of persistent activity. Here I focus on how regional variations in the pyramidal cell phenotype may determine the complexity of cortical circuitry and, in turn, influence neural activity. Data obtained from thousands of individually injected pyramidal cells in sensory, motor, association and executive cortex reveal marked differences in the numbers of putative excitatory inputs received by these cells. Pyramidal cells in prefrontal cortex have, on average, up to 23 times more dendritic spines than those in the primary visual area. I propose that without these specializations in the structure of pyramidal cells, and the circuits they form, human cognitive processing would not have evolved to its present state. I also present data from both New World and Old World monkeys that show varying degrees of complexity in the pyramidal cell phenotype in their prefrontal cortices, suggesting that cortical circuitry and, thus, cognitive styles are evolving independently in different species.