142 resultados para Traffic Flow Fluctuations
Resumo:
Today, the standard approach for the kinetic analysis of dynamic PET studies is compartment models, in which the tracer and its metabolites are confined to a few well-mixed compartments. We examine whether the standard model is suitable for modern PET data or whether theories including more physiologic realism can advance the interpretation of dynamic PET data. A more detailed microvascular theory is developed for intravascular tracers in single-capillary and multiple-capillary systems. The microvascular models, which account for concentration gradients in capillaries, are validated and compared with the standard model in a pig liver study. Methods: Eight pigs underwent a 5-min dynamic PET study after O-15-carbon monoxide inhalation. Throughout each experiment, hepatic arterial blood and portal venous blood were sampled, and flow was measured with transit-time flow meters. The hepatic dual-inlet concentration was calculated as the flow-weighted inlet concentration. Dynamic PET data were analyzed with a traditional single-compartment model and 2 microvascular models. Results: Microvascular models provided a better fit of the tissue activity of an intravascular tracer than did the compartment model. In particular, the early dynamic phase after a tracer bolus injection was much improved. The regional hepatic blood flow estimates provided by the microvascular models (1.3 +/- 0.3 mL min(-1) mL(-1) for the single-capillary model and 1.14 +/- 0.14 min(-1) mL(-1) for the multiple-capillary model) (mean +/- SEM mL of blood min(-1) mL of liver tissue(-1)) were in agreement with the total blood flow measured by flow meters and normalized to liver weight (1.03 +/- 0.12 mL min(-1) mL(-1)). Conclusion: Compared with the standard compartment model, the 2 microvascular models provide a superior description of tissue activity after an intravascular tracer bolus injection. The microvascular models include only parameters with a clear-cut physiologic interpretation and are applicable to capillary beds in any organ. In this study, the microvascular models were validated for the liver and provided quantitative regional flow estimates in agreement with flow measurements.
Resumo:
Heat transfer levels have been investigated behind a rearward-facing step in a superorbital expansion tube. The heat transfer was measured along a flat plate and behind 2 and 3mm steps with the same length to step height ratio. Results were obtained with air as the test gas at speeds of 6.76kms(-1) and 9-60kms(-1) corresponding to stagnation enthalpies of 26MJ/kg and 48MJ/kg respectively. A laminar boundary layer was established on the flat plate and measured heat transfer levels were consistent with classical empirical correlations. In the case of flow behind a step, the measurements showed a gradual rise in heat transfer from the rear of the step to a plateau several step heights downstream for both flow conditions. Reattachment distance was estimated to be approximately 1.6 step heights downstream of the 2mm step at the low enthalpy condition through the use of flow visualisation.
Resumo:
Activation of macrophages with lipopolysaccharide (LPS) induces the rapid synthesis and secretion of proinflammatory cytokines, such as tumor necrosis factor (TNFalpha), for priming the immune response [1, 2]. TNFalpha plays a key role in inflammatory disease [3]; yet, little is known of the intracellular trafficking events leading to its secretion. In order to identify molecules involved in this secretory pathway, we asked whether any of the known trafficking proteins are regulated by LPS. We found that the levels of SNARE proteins were rapidly and significantly up- or downregulated during macrophage activation. A subset of t-SNAREs (Syntaxin 4/SNAP23/Munc18c) known to control regulated exocytosis in other cell types [4, 5] was substantially increased by LPS in a temporal pattern coinciding with peak TNFalpha secretion. Syntaxin 4 formed a complex with Munc18c at the cell surface of macrophages. Functional studies involving the introduction of Syntaxin 4 cDNA or peptides into macrophages implicate this t-SNARE in a rate-limiting step of TNFalpha secretion and in membrane ruffling during macrophage activation. We conclude that in macrophages, SNAREs are regulated in order to accommodate the rapid onset of cytokine secretion and for membrane traffic associated with the phenotypic changes of immune activation. This represents a novel regulatory role for SNAREs in regulated secretion and in macrophage-mediated host defense.
Resumo:
Nielsen and Perrochet [Adv. Water Resour. 23 (2000) 503] presented experimental data for cyclic water movement in the vadose zone above an oscillating watertable. The response of the watertable to cyclic forcing was characterised by the ratios of the forcing head to watertable amplitudes and their associated phase lag. They found that their non-hysteretic Richards' equation model failed to represent the observed behaviour of these parameters. This paper explores the effect on the simulated capillary fringe dynamics (in terms of these parameters) of including varying degrees of hysteresis in the moisture retention curve used in a numerical model of their experiment. It is clear that hysteresis can indeed account for observed discrepancies between simulation and experiment and that the effect of hysteresis varies with the frequency of oscillation. The use of a single-valued mean retention curve, as advocated by some authors, fails to provide a match between the simulated and observed behaviour of the Nielsen and Perrochet parameters, but is shown to be adequate for predicting time-averaged soil moisture profiles. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Recent advances in molecular biology have made it possible to use the trace amounts of DNA in faeces to non-invasively sample endangered species for genetic studies. Here we use faeces as a source of DNA and mtDNA sequence data to elucidate the relationship among Spanish and Moroccan populations of great bustards. 834 bp of combined control region and cytochrome-b mtDNA fragments revealed four variable sites that defined seven closely related haplotypes in 54 individuals. Morocco was fixed for a single mtDNA haplotype that occurs at moderate frequency (28%) in Spain. We could not differentiate among the sampled Spanish populations of Caceres and Andalucia but these combined populations were differentiated from the Moroccan population. Estimates of gene flow (Nm = 0.82) are consistent with extensive observations on the southern Iberian peninsular indicating that few individuals fly across the Strait of Gibraltar. We demonstrate that both this sea barrier and mountain barriers in Spain limit dispersal among adjacent great bustard populations to a similar extent. The Moroccan population is of high ornithological significance as it holds the only population of great bustards in Africa. This population is critically small and genetic and observational data indicate that it is unlikely to be recolonised via immigration from Spain should it be extirpated. In light of the evidence presented here it deserves the maximum level of protection.