161 resultados para Systolic function
Resumo:
Isolated systolic hypertension (ISH) occurs predominantly in the elderly, with a considerable morbidity and mortality. Its etiology is unknown but is likely to involve a significant genetic component. The aim of this study was to examine the angiotensinogen gene in ISH. The M235T and G(- 6)A polymorphisms were genotyped by polymerase chain reaction (PCR) in 86 ISH patients and 120 normotensive controls. Plasma angiotensinogen concentration was determined in 198 subjects by an indirect radioimmunoassay technique. Angiotensinogen mRNA concentration was determined by quantitative competitive reverse transcription (RT)-PCR in subcutaneous adipose tissue from a subset of these patients (n = 8) and controls (n = 6). Both the M235T (p = 0.0015) and G(- 6)A (p = 0.029) polymorphisms were associated with ISH. Plasma angiotensinogen concentration was higher in patients than controls (p < 0.0001), but was not associated with genotype. Angiotensinogen mRNA concentration in adipose tissue from ISH subjects was significantly lower than in adipose tissue from normotensive subjects (p = 0.033). The association of angiotensinogen gene variants with ISH and the elevation of plasma angiotensinogen concentration in these patients suggests a role of the angiotensinogen gene in this form of hypertension. Angiotensinogen gene expression may be altered in ISH, but this requires further examination.
Resumo:
It has been argued that power-law time-to-failure fits for cumulative Benioff strain and an evolution in size-frequency statistics in the lead-up to large earthquakes are evidence that the crust behaves as a Critical Point (CP) system. If so, intermediate-term earthquake prediction is possible. However, this hypothesis has not been proven. If the crust does behave as a CP system, stress correlation lengths should grow in the lead-up to large events through the action of small to moderate ruptures and drop sharply once a large event occurs. However this evolution in stress correlation lengths cannot be observed directly. Here we show, using the lattice solid model to describe discontinuous elasto-dynamic systems subjected to shear and compression, that it is for possible correlation lengths to exhibit CP-type evolution. In the case of a granular system subjected to shear, this evolution occurs in the lead-up to the largest event and is accompanied by an increasing rate of moderate-sized events and power-law acceleration of Benioff strain release. In the case of an intact sample system subjected to compression, the evolution occurs only after a mature fracture system has developed. The results support the existence of a physical mechanism for intermediate-term earthquake forecasting and suggest this mechanism is fault-system dependent. This offers an explanation of why accelerating Benioff strain release is not observed prior to all large earthquakes. The results prove the existence of an underlying evolution in discontinuous elasto-dynamic, systems which is capable of providing a basis for forecasting catastrophic failure and earthquakes.
Resumo:
Highly conserved motifs in the monoamine transporters, e.g. the human norepinephrine transporter (hNET) GXXXRXG motif which was the focus of the present study, are likely to be important structural features in determining function. This motif was investigated by mutating the glycines to glutamate (causing loss of function) and alanine, and the arginine to glycine. The effects of hG117A, hR121G and hG123A mutations on function were examined in COS-7 cells and compared to hNET. Substrate K-m values were decreased for hG117A and hG123A, and their K values for inhibition of [3 H]nisoxetine binding were decreased 3-4-fold and 4-6-fold, respectively. Transporter turnover was reduced to 65% of hNET for hG117A and hR121G and to 28% for hG123A, suggesting that substrate translocation is impaired. K values of nisoxetine and desipramine for inhibition of [H-3]norepinephrine uptake were increased by 5-fold for hG117A, with no change for cocaine. The K-i value of cocaine was increased by 3-fold for hG123A, with no change for nisoxetine and desipramine. However, there were no effects of the mutations on the K-d of [H-3]nisoxetine binding or K-i values of desipramine or cocaine for inhibition of [H-3]nisoxetine binding. Hence, glycine residues of the GXXXRXG motif are important determinants of NET expression and function, while the arginine residue does not have a major role. This study also showed that antidepressants and psychostimulants have different NET binding sites and provided the first evidence that different sites on the NET are involved in the binding of inhibitors and their competitive inhibition of substrate uptake. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Experimental infections were used to track the fate of the dorsal sensilla of Merizocotyle icopae (Monogenea: Monocotylidae) from nasal tissue of the shovelnose ray, Rhinobatos typus (Rhinobatidae). Scanning and transmission electron microscopy revealed that 3 types of uniciliate dorsal sensilla exist at different times in the development of the monogenean. Type 1 sensilla have little or no invagination where the cilium exits the distal end of the dendrite and possess a ring of epidermis surrounding the cilium distal to the invagination. Type 2 sensilla have a deep invagination where the cilium exits the dendrite. Type 3 sensilla can be distinguished from the other types by the shape of the dendrite. The larvae have predominantly Type I dorsal sensilla, most of which are lost approximately 24 h after infection and a few Type 2 sensilla, which are retained. Additional Type 2 sensilla (termed Adult Type 2 sensilla), which are slightly different morphologically from the Type 2 sensilla of the larvae, form in later stages of development. Numerous Type 3 sensilla are unique to the dorsal surface of adults. Loss of all Type I sensilla upon attachment to the host, R. typus, suggests that these may be chemo- or mechanoreceptors responsible for host location by the swimming infective larvae. Type 2 sensilla appear to be important in the larvae, juveniles, and adults whereas the modality mediated by Type 3 is specific to adults. (C) 2003 Wiley-Liss, Inc.
Resumo:
Random mutagenesis and genetic screens for impaired Raf function in Caenorhabditis elegans were used to identify six loss-of-function alleles of lin-45 raf that result in a substitution of a single amino acid. The mutations were classified as weak, intermediate, and strong based on phenotypic severity. We engineered these mutations into the homologous residues of vertebrate Raf-1 and analyzed the mutant proteins for their underlying biochemical defects. Surprisingly, phenotype strength did not correlate with the catalytic activity of the mutant proteins. Amino acid substitutions Val-589 and Ser-619 severely compromised Raf kinase activity, yet these mutants displayed weak phenotypes in the genetic screen. Interestingly, this is because these mutant Raf proteins efficiently activate the MAPK (mitogen-activated protein kinase) cascade in living cells, a result that may inform the analysis of knockout mice. Equally intriguing was the observation that mutant proteins with non-functional Ras-binding domains, and thereby deficient in Ras-mediated membrane recruitment, displayed only intermediate strength phenotypes. This confirms that secondary mechanisms exist to couple Ras to Raf in vivo. The strongest phenotype in the genetic screens was displayed by a S508N mutation that again did not correlate with a significant loss of kinase activity or membrane recruitment by oncogenic Ras in biochemical assays. Ser-508 lies within the Raf-1 activation loop, and mutation of this residue in Raf-1 and the equivalent Ser-615 in B-Raf revealed that this residue regulates Raf binding to MEK. Further characterization revealed that in response to activation by epidermal growth factor, the Raf-S508N mutant protein displayed both reduced catalytic activity and aberrant activation kinetics: characteristics that may explain the C. elegans phenotype.
Resumo:
Modeling physiological processes using tracer kinetic methods requires knowledge of the time course of the tracer concentration in blood supplying the organ. For liver studies, however, inaccessibility of the portal vein makes direct measurement of the hepatic dual-input function impossible in humans. We want to develop a method to predict the portal venous time-activity curve from measurements of an arterial time-activity curve. An impulse-response function based on a continuous distribution of washout constants is developed and validated for the gut. Experiments with simultaneous blood sampling in aorta and portal vein were made in 13 anesthetized pigs following inhalation of intravascular [O-15] CO or injections of diffusible 3-O[ C-11] methylglucose (MG). The parameters of the impulse-response function have a physiological interpretation in terms of the distribution of washout constants and are mathematically equivalent to the mean transit time ( T) and standard deviation of transit times. The results include estimates of mean transit times from the aorta to the portal vein in pigs: (T) over bar = 0.35 +/- 0.05 min for CO and 1.7 +/- 0.1 min for MG. The prediction of the portal venous time-activity curve benefits from constraining the regression fits by parameters estimated independently. This is strong evidence for the physiological relevance of the impulse-response function, which includes asymptotically, and thereby justifies kinetically, a useful and simple power law. Similarity between our parameter estimates in pigs and parameter estimates in normal humans suggests that the proposed model can be adapted for use in humans.
Resumo:
The Lanczos algorithm is appreciated in many situations due to its speed. and economy of storage. However, the advantage that the Lanczos basis vectors need not be kept is lost when the algorithm is used to compute the action of a matrix function on a vector. Either the basis vectors need to be kept, or the Lanczos process needs to be applied twice. In this study we describe an augmented Lanczos algorithm to compute a dot product relative to a function of a large sparse symmetric matrix, without keeping the basis vectors.
Resumo:
We analyzed the mouse Representative Transcript and Protein Set for molecules involved in brain function. We found full-length cDNAs of many known brain genes and discovered new members of known brain gene families, including Family 3 G-protein coupled receptors, voltage-gated channels, and connexins. We also identified previously unknown candidates for secreted neuroactive molecules. The existence of a large number of unique brain ESTs suggests an additional molecular complexity that remains to be explored. A list of genes containing CAG stretches in the coding region represents a first step in the potential identification of candidates for hereditary neurological disorders.
Resumo:
PURPOSE: To determine the effects of aggressive lipid lowering on markers of ischemia, resistance vessel function, atherosclerotic burden, and Symptom status in patients with symptomatic coronary artery disease. METHODS: Sixty consecutive patients with coronary artery disease that was unsuitable for revascularization were assigned randomly to either usual therapy of lipids for patients with a low-density lipoprotein (LDL) cholesterol target level <116 mg/dL, or to a, more aggressive lipid-lowering strategy involving up to 80 mg/d of atorvastatin, with a target LDL cholesterol level <77 mg/dL. The extent and severity of inducible ischemia (by dobutamine echocardiography), vascular function.(brachial artery reactivity), atheroma burden (carotid intima-media thickness), and symptom status were evaluated blindly at baseline and after 12 weeks of treatment. RESULTS: After 12 weeks of treatment, patients in the aggressive therapy group had a significantly greater decrease in mean (+/- SD) LDL cholesterol level than those in the usual care group (29 +/- 38 mg/dL vs. 7 +/- 24 mg/dL, P = 0.03). Patients in the aggressive therapy group had a reduction in the number of ischemic wall segments (mean between-group difference of 1.3; 95% confidence interval: 0.1 to 2.0; P = 0.04), flow-mediated dilatation (mean between-group difference of 5.9%; 95% confidence interval: 2.5% to 9.4%; P = 0.001), and angina score after 12 weeks. There were no significant changes in atherosclerotic burden in either group. CONCLUSION: Patients with symptomatic coronary artery disease who are treated with aggressive lipid lowering have improvement of symptom status and ischemia that appears to reflect improved vascular function but not atheroma burden. Am J Med. 2003;114:445-453. (C) 2003 by Excerpta Medica Inc.
Resumo:
Abnormal left ventricular (IV) filling may occur with increasing age despite apparently normal IV size and function, and is usually attributed to IV hypertrophy and coronary artery disease. The purpose of this study was to determine whether myocardial abnormalities could be identified in 67 such patients (36 men, mean age 57 +/- 9 years) whose IV hypertrophy and coronary artery disease were excluded by dobutamine echocardiography. All patients underwent gray scale and color tissue Doppler imaging from 3 apical views, which were stored and analyzed off line. Disturbances in structure and function were assessed by averaging the cyclic variation of integrated backscatter, strain rate, and peak systolic strain from each myocardial segment. Calibrated integrated backscatter (corrected for pericardial backscatter intensity) was measured in the septum and posterior wall from the parasternal long-axis view. Abnormal IV filling was present in 36 subjects (54%). Subjects with and without abnormal IV filling had similar IV mass, but differed in age (p <0.01), cyclic variation (p = 0.001), strain rate (p <0.01), and peak systolic strain (p <0.001). Multivariate logistic regression analysis demonstrated that age (p = 0.016) and cyclic variation (p = 0.042) were the most important determinants of abnormal IV filling in these apparently normal subjects. (C) 2003 by Excerpta Medica, Inc.
Resumo:
Vps4p (End13p) is an AAA-family ATPase that functions in membrane transport through endosomes, sorting of soluble vacuolar proteins to the vacuole, and multivesicular body (MVB) sorting of membrane proteins to the vacuole lumen. In a yeast two-hybrid screen with Vps4p as bait we isolated VPS20 (YMR077c) and the novel open reading frame YLA181c, for which the name VTA1 has recently been assigned (Saccharomyces Genome Database). Vps4p directly binds Vps20p and Vta1p in vitro and binding is not dependent on ATP-conversely, Vps4p binding to Vps20p is partially sensitive to ATP hydrolysis. Both ATP binding [Vps4p-(K179A)] and ATP hydrolysis [Vps4p-(E233Q)] mutant proteins exhibit enhanced binding to Vps20p and Vta1p in vitro. The Vps4p-Vps20p interaction involves the coiled-coil domain of each protein, whereas the Vps4p-Vta1p interaction involves the (non-coiled-coil) C-terminus of each protein. Deletion of either VPS20 (vps20Delta) or VTA1 (vta1Delta) leads to similar class E Vps(-) phenotypes resembling those of vps4Delta, including carboxypeptidase Y (CPY) secretion, a block in ubiquitin-dependent MVB sorting, and a delay in both post-internalisation endocytic transport and biosynthetic transport to the vacuole. The vacuole resident membrane protein Sna3p (whose MVB sorting is ubiquitin-independent) does not appear to exit the class E compartment or reach the vacuole in cells lacking Vps20p, Vta1p or Vps4p, in contrast to other proteins whose delivery to the vacuole is only delayed. We propose that Vps20p and Vta1p regulate Vps4p function in vivo.