212 resultados para Sex determination, Genetic.
Resumo:
Rapid and sensitive polymerase chain reaction (PCR) methods ape described for determination of the two 16 S rDNA subgroups of Ralstonia solanacearum, the causal agent of bacterial wilt. A third subgroup consisting of Indonesian R. solanacearum isolates belonging to Division II, the blood disease bacterium and Pseudomonas syzygii can also be identified. Primers were designed to sequences within R, solanacearum 16 S rDNA (equivalent to Escherichia coli 16 S rDNA positions 74-97, 455-475, 1454-1474), and the internal transcribed spacer region between the 16 S and 23 S rDNA genes. Different combinations of forward and reverse primers allowed selective PCR amplification of (a) R. solanacearum Division I (biovars 3, 4 and 5), (b) Division TI (biovars 1, N2, and 2) including the blood disease bacterium and P. syzygii, or (c) amplification of Division II only except for five biovar 1, 2 or N2 isolates of R. solanacearum from Indonesia, P. syzygii and the BDB. A total of 104 R. solanacearum, 14 blood disease bacterium and 10 P. syzygii isolates were tested. Simultaneous detection of species and subdivision was achieved by designing a multiplex PCR test in which a 288-base pair (bp) band is produced by all R. solanacearum isolates, and an additional 409-bp band in Division I strains.
Resumo:
In this study, the pattern of movement of young male and female rabbits and the genetic structures present in adult male and female populations in four habitats was examined. The level of philopatry in young animals was found to vary between 18-90% for males and 32-95% for females in different populations. It was skewed, with more males dispersing than females in some but not all populations. Analysis of allozyme data using spatial autocorrelation showed that adult females from the same social group, unlike males, were significantly related in four of the five populations studied. Changes in genetic structure and rate of dispersal were measured before and during the recovery of a population that was artificially reduced in size. There were changes in the rate and distance of dispersal with density and sex. Subadults of both sexes moved further in the first year post crash (low density) than in the following years. While the level of dispersal for females was lower than that of the males for the first 3 years, thereafter (high density) both sexes showed similar, low levels of dispersal (20%). The density at which young animals switch behaviour between dispersal and philopatry differed for males and females. The level of genetic structuring in adult females was high in the precrash population, reduced in the first year post crash and undetectable in the second year. Dispersal behaviour of rabbits both affects the genetic structure of the population and changes with conditions. Over a wide range of levels of philopatry, genetic structuring is present in the adult female, but not the male population. Consequently, though genetic structuring is present, it does not lead to inbreeding. More long-distance movements are found in low-density populations, even though vacant warrens are available near birth warrens. The distances moved decreased as density increased. Calculation of the effective population size (N-e) shows that changes in dispersal distance offset changes in density, so that N-e remains constant.
Resumo:
The embryonic peripheral nervous system of Drosophila contains two main types of sensory neurons: type I neurons, which innervate external sense organs and chordotonal organs, and type II multidendritic neurons, Here, we analyse the origin of the difference between type I and type II in the case of the neurons that depend on the proneural genes of the achaete-scute complex (ASC), We show that, in Notch(-) embryos, the type I neurons are missing while type nr neurons are produced in excess, indicating that the type I/type II choice relies on Notch-mediated cell communication, In contrast, both type I and type II neurons are absent in numb(-) embryos and after ubiquitous expression of tramtrack, indicating that the activity of numb and the absence of tramtrack are required to produce both external sense organ and multidendritic neural fates, The analysis of string(-) embryos reveals that when the precursors are unable to divide they differentiate mostly into type II neurons, indicating that the type II is the default neuronal fate, We also report a new mutant phenotype where the ASC-dependent neurons are converted into-type II neurons, providing evidence for the existence of one or more genes required for maintaining the alternative (type I) fate, Our results suggest that the same mechanism of type I/type II specification may operate at a late step of the ASC-dependent lineages, when multidendritic neurons arise as siblings of the external sense organ neurons and, at an early step, when other multidendritic neurons precursors arise as siblings of external sense organ precursors.
Resumo:
The concept of parameter-space size adjustment is pn,posed in order to enable successful application of genetic algorithms to continuous optimization problems. Performance of genetic algorithms with six different combinations of selection and reproduction mechanisms, with and without parameter-space size adjustment, were severely tested on eleven multiminima test functions. An algorithm with the best performance was employed for the determination of the model parameters of the optical constants of Pt, Ni and Cr.
Resumo:
OBJECTIVE: We investigated maternal versus fetal genetic causes of preeclampsia and eclampsia by assessing concordance between monozygotic and dizygotic female co-twins, between female partners of male monozygotic and dizygotic twin pairs, and between female twins and partners of their male co-twins in dizygotic opposite-sex pairs. STUDY DESIGN: Two large birth cohorts of volunteer Australian female twin pairs (N = 1504 pairs and N = 858 pairs) were screened and interviewed, and available medical and hospital records were obtained and reviewed where indicated, with diagnoses assigned according to predetermined criteria. RESULTS: With strict diagnostic criteria used for preeclampsia and eclampsia, no concordant female twin pairs were found. Collapsing diagnoses of definite, probable, or possible preeclampsia or eclampsia resulted in very low genetic recurrence risk estimates. CONCLUSION: Results from these two cohorts of female twin pairs do not support clear, solely maternal genetic influences on preeclampsia and eclampsia. Numbers of parous female partners of male twins were too low for conclusions to be drawn regarding paternal transmission.
Resumo:
The objective was to investigate the genetic epidemiology of figural stimuli. Standard figural stimuli were available from 5,325 complete twin pairs: 1,751 (32.9%) were monozygotic females, 1,068 (20.1%) were dizygotic females, 752 (14.1%) were monozygotic males, 495 (9.3%) were dizygotic males, and 1,259 (23.6%) were dizygotic male-female pairs. Univariate twin analyses were used to examine the influences on the individual variation in current body size and ideal body size. These data were analysed separately for men and women in each of five age groups. A factorial analysis of variance, with polychoric correlations between twin pairs as the dependent variable, and age, sex, zygosity, and the three interaction terms (age x sex, age x zygosity, sex x zygosity) as independent variables, was used to examine trends across the whole data set. Results showed genetic influences had the largest impact on the individual variation in current body size measures, whereas non-shared environmental influences were associated with the majority of individual variation in ideal body size. There was a significant main effect of zygosity (heritability) in predicting polychoric correlations for current body size and body dissatisfaction. There was a significant main effect of gender and zygosity in predicting ideal body size, with a gender x zygosity interaction. In common with BMI, heritability is important in influencing the estimation of current body size. Selection of desired body size for both men and women is more strongly influenced by environmental factors.
Resumo:
Current serotyping methods classify Pasteurella multocida into five capsular serogroups (serogroups A, B, D, E, and F) and 16 somatic serotypes (serotypes 1 to 16). In the present study, we have developed a multiplex PCR assay as a rapid alternative to the conventional capsular serotyping system. The serogroup-specific primers used in this assay were designed following identification, sequence determination, and analysis of the capsular biosynthetic loci of each capsular serogroup. The entire capsular biosynthetic loci of P. multocida A:1 (X-73) and B:2 (M1404) have been cloned and sequenced previously (J. Y. Chung, Y. M. Zhang, and B. Adler, FEMS Microbiol. Lett. 166:289-296, 1998; J. D. Boyce, J. Y. Chung, and B. Adler, Vet. Microbiol. 72:121-134, 2000). Nucleotide sequence analysis of the biosynthetic region (region 2) from each of the remaining three serogroups, serogroups D, E, and F, identified serogroup-specific regions and gave an indication of the capsular polysaccharide composition. The multiplex capsular PCR assay was highly specific, and its results, with the exception of those for some serogroup F strains, correlated well with conventional serotyping results. Sequence analysis of the strains that gave conflicting results confirmed the validity of the multiplex PCR and indicated that these strains were in fact capsular serogroup A. The multiplex PCR will clarify the distinction between closely related serogroups A and F and constitutes a rapid assay for the definitive classification of P. multocida capsular types
Resumo:
The extent to which the genetic risk for alcohol dependence (AD) and conduct disorder (CD) and their common genetic risk overlap with genetic factors contributing to variation in dimensions of personality was examined in a study of 6,453 individuals from 3,383 adult male and female same-sex and unlike-sex twin pairs from the Australian Twin Registry. The associations between the personality dimensions of positive emotionality, negative emotionality, and AD and CD risk were modest. whereas the associations between behavioral undercontrol and AD and CD risk were substantially higher. Genetic influences contributing to variation in behavioral undercontrol accounted for about 40% of the genetic variation in AD and CD risk and about 90% of the common genetic risk for AD and CD. These results suggest that genetic factors contributing to variation in dimensions of personality, particularly behavioral undercontrol. account for a substantial proportion of the genetic diathesis for AD and most of the common genetic diathesis for AD and CD among both men and women.
Resumo:
Offspring sex ratios were examined at the population and family level in the sexually monomorphic, socially monogamous fairy martin Petrochelidon ariel at five colony sites over a 4-year period (1993 1996). The sex of 465 nestlings from 169 broods % as determined using sex-specific PCR at the CHD locus. In accordance with predicted sex allocation patterns, population sex ratios at hatching and fledging did not differ from parity in an), year and the variance in brood sex ratios did not deviate from the binomial distribution, Further, brood sex ratio did not vary with hatching date during the season, brood number, brood size or colony size, The sex ratio or broods with extra-pair young did not differ from those without, while the sex ratio of broods fathered by males that gained extra-pair fertilizations did not differ from broods fathered by other males. Extra-pair chicks were as likely to be male as female. Neither the total number of feeding visits to the brood nor the relative feeding contribution by the sexes varied significantly with brood sex ratio. Brood sex ratios were also unrelated to paternal size, condition and breeding experience or maternal condition and breeding experience, However, contrary to our prediction, brood sex ratio was negatively correlated with maternal size. Generally, these results were consistent with our expectations that brood sex ratios would not vary with environmental factors or parental characteristics, and would not influence the level of parental provisioning. However, the finding that females with longer tarsi produced an excess of daughters is difficult to reconcile with our current understanding or fairy martin life history and breeding ecology.
Resumo:
We combine spatial data on home ranges of individuals and microsatellite markers to examine patterns of fine-scale spatial genetic structure and dispersal within a brush-tailed rock-wallaby (Petrogale penicillata) colony at Hurdle Creek Valley, Queensland. Brush-tailed rock-wallabies were once abundant and widespread throughout the rocky terrain of southeastern Australia; however, populations are nearly extinct in the south of their range and in decline elsewhere. We use pairwise relatedness measures and a recent multilocus spatial autocorrelation analysis to test the hypotheses that in this species, within-colony dispersal is male-biased and that female philopatry results in spatial clusters of related females within the colony. We provide clear evidence for strong female philopatry and male-biased dispersal within this rock-wallaby colony. There was a strong, significant negative correlation between pairwise relatedness and geographical distance of individual females along only 800 m of cliff line. Spatial genetic autocorrelation analyses showed significant positive correlation for females in close proximity to each other and revealed a genetic neighbourhood size of only 600 m for females. Our study is the first to report on the fine-scale spatial genetic structure within a rock-wallaby colony and we provide the first robust evidence for strong female philopatry and spatial clustering of related females within this taxon. We discuss the ecological and conservation implications of our findings for rock-wallabies, as well as the importance of fine-scale spatial genetic patterns in studies of dispersal behaviour.
Resumo:
We conducted a demographic and genetic study to investigate the effects of fragmentation due to the establishment of an exotic softwood plantation on populations of a small marsupial carnivore, the agile antechinus (Antechinus agilis), and the factors influencing the persistence of those populations in the fragmented habitat. The first aspect of the study was a descriptive analysis of patch occupancy and population size, in which we found a patch occupancy rate of 70% among 23 sites in the fragmented habitat compared to 100% among 48 sites with the same habitat characteristics in unfragmented habitat. Mark-recapture analyses yielded most-likely population size estimates of between 3 and 85 among the 16 occupied patches in the fragmented habitat. Hierarchical partitioning and model selection were used to identify geographic and habitat-related characteristics that influence patch occupancy and population size. Patch occupancy was primarily influenced by geographic isolation and habitat quality (vegetation basal area). The variance in population size among occupied sites was influenced primarily by forest type (dominant Eucalyptus species) and, to a lesser extent, by patch area and topographic context (gully sites had larger populations). A comparison of the sex ratios between the samples from the two habitat contexts revealed a significant deficiency of males in the fragmented habitat. We hypothesise that this is due to male-biased dispersal in an environment with increased dispersal-associated mortality. The population size and sex ratio data were incorporated into a simulation study to estimate the proportion of genetic diversity that would have been lost over the known timescale since fragmentation if the patch populations had been totally isolated. The observed difference in genetic diversity (gene diversity and allelic richness at microsatellite and mitochondrial markers) between 16 fragmented and 12 unfragmented sites was extremely low and inconsistent with the isolation of the patch populations. Our results show that although the remnant habitat patches comprise approximately 2% of the study area, they can support non-isolated populations. However, the distribution of agile antechinus populations in the fragmented system is dependent on habitat quality and patch connectivity. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
After ingestion of a standardized dose of ethanol, alcohol concentrations were assessed, over 3.5 hours from blood (six readings) and breath (10 readings) in a sample of 412 MZ and DZ twins who took part in an Alcohol Challenge Twin Study (ACTS). Nearly all participants were subsequently genotyped on two polymorphic SNPs in the ADH1B and ADH1C loci known to affect in vitro ADH activity. In the DZ pairs, 14 microsatellite markers covering a 20.5 cM region on chromosome 4 that includes the ADH gene family were assessed, Variation in the timed series of autocorrelated blood and breath alcohol readings was studied using a bivariate simplex design. The contribution of a quantitative trait locus (QTL) or QTL's linked to the ADH region was estimated via a mixture of likelihoods weighted by identity-by-descent probabilities. The effects of allelic substitution at the ADH1B and ADH1C loci were estimated in the means part of the model simultaneously with the effects sex and age. There was a major contribution to variance in alcohol metabolism due to a QTL which accounted for about 64% of the additive genetic covariation common to both blood and breath alcohol readings at the first time point. No effects of the ADH1B*47His or ADH1C*349Ile alleles on in vivo metabolism were observed, although these have been shown to have major effects in vitro. This implies that there is a major determinant of variation for in vivo alcohol metabolism in the ADH region that is not accounted for by these polymorphisms. Earlier analyses of these data suggested that alcohol metabolism is related to drinking behavior and imply that this QTL may be protective against alcohol dependence.
Resumo:
Genetic control of adventitious rooting was characterised in two unrelated Pinus elliottii x P. caribaea families, an outbred F-1 (n = 287) and an inbred F-2 ( n = 357). Rooting percentage was assessed in three settings and root biomass was measured on a sub-set of clones ( n = 50) from each family in the third setting. On average, clones in the outbred F-1 had a higher rooting percentage (mean +/- SE; 59 +/- 1.9%) and biomass (mean +/- SD; 0.41 +/- 0.24 g) than clones in the inbred F-2 family ( mean +/- SE; 48 +/- 1.8% and mean +/- SD; 0.19 +/- 0.13 g). Genetic determination for rooting percentage was strong in both families, as indicated by high individual setting clonal repeatabilities ( e. g. Setting 3; outbred F-1 0.62 +/- 0.03 and inbred F-2 0.68 +/- 0.02 (H-2 +/- SE)) and the moderate-to-high genetic correlations amongst the three settings. For root biomass, clonal repeatabilities for both families were lower (outbred F-1 0.35 +/- 0.09 and inbred F-2 0.44 +/- 0.10 (H-2 +/- SE)). Weak positive genetic correlations between rooting percentage and root biomass in both families suggested a concomitant gain in root biomass would be insignificant when selecting solely on the more easily assessable rooting percentage.
Resumo:
Many twin studies have identified sex differences in the influence of genetic and environmental factors on smoking behaviors. We explore the evidence for sex differences for smoking initiation and cigarette consumption in a sample of Australian twin families, and extend these models to incorporate sex differences in linkage analyses for these traits. We further examine the impact of including or excluding non-smokers in genetic analyses of tobacco consumption. Accounting for sex differences improved linkage results in some instances. We identified one region suggestive of linkage on chromosome 11p12. This locus, as well as another region identified on chromosome 6p12, replicates regions identified in previous studies.
Resumo:
Fluorescence spectrophotometry can reliably detect levels of the pteridine 6-biopterin in the heads of individual Drosophila serrata Malloch 1927. Pteridine content in both laboratory and field captured flies is typically a level of magnitude higher than the minimally detectable level (mean(lab)=0.54 units, mean(field)=0.44 units, minimum detectable level=0.01 units) and can be used to predict individual age in laboratory populations with high certainty (r(2)=57%). Laboratory studies of individuals of known age ( from 1 to 48 days old) indicate that while pteridine level increases linearly with age, they also increase in a linear manner with rearing temperature and ambient light levels, but are independent of sex. As expected, the longevity of laboratory-reared males ( at least 48 days) is higher than the range of predicted ages of wild-caught males based on individual pteridine levels (40 days). However, the predictive equation based on pteridine level alone suggested that a number of wild-caught males were less than 0 days old, and the 95% confidence for these predictions based on the inverse regression broad. The age of the oldest wild-caught male is to fall within the range of 2 to 50 days. The effects of temperature and light intensity determined in laboratory study (effect sizes omega(2)=14.3 and respectively) suggests that the calibration of the prediction equation for field populations would significantly improved when combined with fine scaled studies of habitat temperature and light conditions. ability to determine relative age in individual wild-caught D. serrata presents great opportunities for a variety evolutionary studies on the dynamics of populations.