154 resultados para Seedling field emergence
Resumo:
Most studies of tiller development have not related the physiological and morphological features of each calm to its subsequent fertility. This introduced problems when trying to account for the effects of tillering on yield in crop models. The objective of this study was to detect the most likely early determinants of tiller fertility in sorghum by identifying hierarchies for emergence, fertility and grain number of tillers over a wide range of assimilate availabilities. Emergence, phenology, leaf area development and dry weight partitioning were quantified weekly for individual tillers and main culms of tillering and uniculm plants grown at one of four densities, from two to 16 plants m(-2). For a given plant in any given density, the same tiller hierarchy applied for emergence of tillers, fertility of the emerged tillers and their subsequent grain number. These results were observed over a range of tiller fertility rates (from 7 to 91%), fertile tiller number per plant at maturity (from 0.2 to 4.7), and tiller contribution to grain yield (from 5 to 78%). Tiller emergence was most probably related to assimilate supply and light quality. Development, fertility and contribution to yield of a specific tiller were highly dependent on growing conditions at the time of tiller emergence, particularly via early leaf area development of the tiller, which affected its subsequent leaf area accumulation. Assimilate availability in the main culm at the time of tiller emergence was the most likely early determinant of subsequent tiller fertility in this study. (C) 2002 Annals of Botany Company.
Resumo:
Magnetic resonance imaging (MRI) magnets have very stringent constraints on the homogeneity of the static magnetic field that they generate over desired imaging regions. The magnet system also preferably generates very little stray field external to its structure, so that ease of siting and safety are assured. This work concentrates on deriving, means of rapidly computing the effect of 'cold' and 'warm' ferromagnetic material in or around the superconducting magnet system, so as to facilitate the automated design of hybrid material MR magnets. A complete scheme for the direct calculation of the spherical harmonics of the magnetic field generated by a circular ring of ferromagnetic material is derived under the conditions of arbitrary external magnetizing fields. The magnetic field produced by the superconducting coils in the system is computed using previously developed methods. The final, hybrid algorithm is fast enough for use in large-scale optimization methods. The resultant fields from a practical example of a 4 T, clinical MRI magnet containing both superconducting coils and magnetic material are presented.
Resumo:
The effects of wing shape, wing size, and fluctuating asymmetry in these measures oil the field fitness of T. nr. brassicae and T. pretiosum were investigated. Trichogramma wasps mass-reared on eggs of the factitious host Sitotroga cerealella were released in tomato paddocks and those females ovipositing on Helicoverpo spp. eggs were recaptured. Comparisons of the recaptured group with a sample from the release population were used to assess fitness. Wing data were obtained by positioning landmarks on mounted forewings. Size was then measured as the centroid size computed from landmark distances, while Procrustes analysis followed by principal component analysis was used to assess wing shape. Similar findings were obtained for both Trichogramma species: fitness of wasps was strongly related to wing size and some shape dimensions, but not to the asymmetries of these measures. Wasps which performed well in the field had larger wings and a different wing shape compared to wasps from the mass reared population. Both size and the shape dimensions were linearly associated with fitness although there was also some evidence for non-linear selection on shape. The results suggest that wing shape and wing size are reliable predictors of field fitness for these Trichogramma wasps.
Resumo:
Effects of soil water availability on seedling growth, dry matter production and allocation were determined for Gympie ( humid coastal) and Hungry Hills ( dry inland) provenances of Eucalyptus cloeziana F. Muell. and for E. argophloia Blakely ( dry inland) species. Seven-month-old seedlings were subjected to well-watered (100% field capacity, FC), moderate (70% FC) and severe (50% FC) soil water regimes in a glasshouse environment for 14 wk. There were significant differences in seedling growth, biomass production and allocation patterns between species. E. argophloia produced twice as much biomass at 100% FC, and more than three times as much at 70% and 50% FC than did either E. cloeziana provenance. Although the humid provenance of E. cloeziana had a greater leaf area at 100% FC conditions than did the dry provenance, total biomass production did not differ significantly. Both E. cloeziana provenances were highly sensitive to water deficits. E. argophloia allocated 10% more biomass to roots than did E. cloeziana. Allometric analyses indicated that relative biomass allocation patterns were significantly affected by genotype but not by soil water availability. These results have implications for taxon selection for cultivation in humid and subhumid regions.
Resumo:
White cypress-pine stands typically support sparse densities of shrubs and grasses. The commonly held opinion is that leaching of allelopathic chemical compounds from cypress-pine litter partly facilitates this exclusion. Germination and growth of cypress pine seedlings do not appear to be similarly affected. This study set out to determine whether cypress litter had a differential effect on germination and growth of cypress-pine seedlings and on associated ground-cover species. Glasshouse trials comparing seedling emergence under cypress- and artificial-litter layers were undertaken. Cypress-pine litter did not have an inhibitory effect on the germination or growth of ground-cover species. In most cases, seedling emergence was facilitated by the application of cypress-pine litter due to its ability to increase the water holding capacity of the underlying soil. Cypress litter did not promote growth of its own seedlings over its competitors except on coarse-textured soils where it provided an ameliorative function to water stress due to the soil's reduced water holding capacity. The inhibition of ground-cover species' germination and growth in pure cypress stands was suggested to be the result of high below-ground resource competition due to the pine's expansive root morphology.
Resumo:
Motivated by application of current superalgebras in the study of disordered systems such as the random XY and Dirac models, we investigate gl(2\2) current superalgebra at general level k. We construct its free field representation and corresponding Sugawara energy-momentum tensor in the non-standard basis. Three screen currents of the first kind are also presented. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This communications describes an electromagnetic model of a radial line planar antenna consisting of a radial guide with one central probe and many peripheral probes arranged in concentric circles feeding an array of antenna elements such as patches or wire curls. The model takes into account interactions between the coupling probes while assuming isolation of radiating elements. Based on this model, computer programs are developed to determine equivalent circuit parameters of the feed network and the radiation pattern of the radial line planar antenna. Comparisons are made between the present model and the two-probe model developed earlier by other researchers.
Resumo:
In this paper we examine the effects of varying several experimental parameters in the Kane quantum computer architecture: A-gate voltage, the qubit depth below the silicon oxide barrier, and the back gate depth to explore how these variables affect the electron density of the donor electron. In particular, we calculate the resonance frequency of the donor nuclei as a function of these parameters. To do this we calculated the donor electron wave function variationally using an effective-mass Hamiltonian approach, using a basis of deformed hydrogenic orbitals. This approach was then extended to include the electric-field Hamiltonian and the silicon host geometry. We found that the phosphorous donor electron wave function was very sensitive to all the experimental variables studied in our work, and thus to optimize the operation of these devices it is necessary to control all parameters varied in this paper.
Resumo:
The role of sunscreens in preventing skin cancer and melanoma is the focus of ongoing research. Currently, there is no objective measure which can be used in field studies to determine whether a person has applied sunscreen to their skin, and researchers must use indirect assessments such as questionnaires. We sought to develop a rapid, non-invasive method for identifying sunscreen on the skin for use in epidemiological studies. Our basic method is to swab the skin, elute any residues which have been adsorbed onto the swab by rinsing in ethanol, and submit the eluted washings for spectrophotometric analysis. In a controlled study, we applied 0.1 ml of sunscreen to a 50 cm(2) grid on both forearms of 21 volunteers. Each forearm was allocated one of 10 different sunscreen brands. The skin was swabbed after intervals of 20 min, 1 h, 2 h and 4 h. In a field study conducted among 12 children aged 2-4 years attending a child care centre, sunscreen was applied to the faces of half the children. Swabs were then taken from the face and back of all children without knowledge of sunscreen status. In the controlled study, sunscreen was clearly detectable up to 2 h after application for all brands containing organic sunscreen, and marginally detectable at 4 h. In the field study, this method correctly identified all children with and without sunscreen. We conclude that spectrophotometric analysis of skin swabs can reliably detect the presence of sunscreen on the skin for up to 2 It after application. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Incursions of Japanese encephalitis (JE) virus into northern Queensland are currently monitored using sentinel pigs. However, the maintenance of these pigs is expensive, and because pigs are the major amplifying hosts of the virus, they may contribute to JE transmission. Therefore, we evaluated a mosquito-based detection system to potentially replace the sentinel pigs. Single, inactivated JE-infected Culex annulirostris Skuse and C. sitiens Wiedemann were placed into pools of uninfected mosquitoes that were housed in a Mosquito Magnet Pro (MM) trap set under wet season field conditions in Cairns, Queensland for 0, 7, or 14 d. JE viral RNA was detected (cycling threshold [CT] = 40) in 11/ 12, 10/14, and 2/5 pools containing 200, 1,000, and 5,000 mosquitoes, respectively, using a TaqMan real-time reverse transcription-polymerase chain reaction (RT-PCR). The ability to detect virus was not affected by the length of time pools were maintained under field conditions, although the CT score tended to increase with field exposure time. Furthermore, JE viral RNA was detected in three pools of 1,000 mosquitoes collected from Badu Island using a MM trap. These results indicated that a mosquito trap system employing self-powered traps, such as the MosquitoMagnet, and a real-time PCR system, could be used to monitor for JE in remote areas.
Resumo:
Prior theoretical studies indicate that the negative spatial derivative of the electric field induced by magnetic stimulation may he one of the main factors contributing to depolarization of the nerve fiber. This paper studies this parameter for peripheral nerve stimulation (PNS) induced by time.-varying gradient fields during MRI scans. The numerical calculations are based on an efficient, quasi-static, finite-difference scheme and an anatomically realistic human, full-body model. Whole-body cylindrical and planar gradient sets in MRI systems and various input signals have been explored. The spatial distributions of the induced electric field and their gradients are calculated and attempts are made to correlate these areas with reported experimental stimulation data. The induced electrical field pattern is similar for both the planar coils and cylindrical coils. This study provides some insight into the spatial characteristics of the induced field gradients for PNS in MRI, which may be used to further evaluate the sites where magnetic stimulation is likely to occur and to optimize gradient coil design.
Resumo:
In modern magnetic resonance imaging (MRI), patients are exposed to strong, nonuniform static magnetic fields outside the central imaging region, in which the movement of the body may be able to induce electric currents in tissues which could be possibly harmful. This paper presents theoretical investigations into the spatial distribution of induced electric fields and currents in the patient when moving into the MRI scanner and also for head motion at various positions in the magnet. The numerical calculations are based on an efficient, quasi-static, finite-difference scheme and an anatomically realistic, full-body, male model. 3D field profiles from an actively shielded 4T magnet system are used and the body model projected through the field profile with a range of velocities. The simulation shows that it possible to induce electric fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The results are extrapolated to very high field strengths and tabulated data shows the expected induced currents and fields with both movement velocity and field strength. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
This paper continues the development of a new approach for the design of shim and gradient coils, used in magnetic resonance imaging (MRI) applications. A cylindrical primary coil of radius a and length 2L is placed inside a co-axial shield cylinder of radius b. An active shielding strategy is used to create a desired target field at an arbitrarily specified (cylindrical) location within the primary coil, and to annul the field at a certain radius outside the shield. The form of the interior target field may be chosen arbitrarily by the designer, although zonal and tesseral harmonics are typically used in MRI applications. The method presented here designs coil windings on both the primary and shielding cylinders, to produce fields that conform to the specified interior target field and the annulled field exterior to the shield. An additional feature of the method presented here is that the target field inside the primary coil is matched at two different radii, to improve overall accuracy. The method is illustrated by designing several shielded shim coils, for creating higher order tesseral fields located asymmetrically within the coil. The simpler case of pure zonal fields is discussed separately and applied to the design of some higher order shielded coils.