144 resultados para Plant Physiological Phenomena
Resumo:
Despite extensive research since pathogenicity was first established in 1919, no cultural or chemical control strategy has proven effective against Fusarium wilt of bananas. The efficacy of cultural control is attributed to the suppression of pathogen activity. Yet, amending naturally infested soil with aged chicken manure has been shown to enhance disease severity, without any change in the activity of the pathogen Fusarium oxysporum f. sp. cubense (Foc) in the soil. In this study, the effect of amending soil with composted sawdust, and of solarising soil, was compared with the effect of amending soil with chicken manure. Bioassays comparing the activity of Foc in the soil with the extent of invasion of banana pseudostem tissue by Foc were used to investigate why strategies targetting pathogen survival have not proven successful in controlling this disease. The enhancement of Foc invasion of the banana plantlets was reproduced with the addition of chicken manure to the naturally infested soil. However, changes in the activity of Foc in the soil were not associated with changes in the frequency of invasion of the plantlets. Invasion of banana pseudostems in the sawdust and solarisation treatments was not significantly different from invasion in the respective control treatments, despite a reduction in the activity of Foc in the sawdust-amended soil and an enhancement in the solarised soil. Moreover, the increase in Foc activity in the solarised soil recorded during the bioassays occurred despite the effectiveness of solarisation in reducing the survival of Foc in pre-colonised banana root tips buried in the soil. Changes in the frequency of invasion were associated with changes in the availability of mineral nitrogen, particularly ammonium N. These results suggest that the physiological response of banana cultivars to ammonium N may be associated with their susceptibility to Fusarium wilt. Accordingly, cultural strategies for controlling Panama disease will only be effective if they enhance the ability of the host to resist invasion.
Resumo:
Chk1 kinase coordinates cell cycle progression and preserves genome integrity. Here, we show that chemical or genetic ablation of human Chk1 triggered supraphysiological accumulation of the S phase-promoting Cdc25A phosphatase, prevented ionizing radiation (IR)-induced degradation of Cdc25A, and caused radioresistant DNA synthesis (RDS). The basal turnover of Cdc25A operating in unperturbed S phase required Chk1-dependent phosphorylation of serines 123, 178, 278, and 292. IR-induced acceleration of Cdc25A proteolysis correlated with increased phosphate incorporation into these residues generated by a combined action of Chk1 and Chk2 kinases. Finally, phosphorylation of Chk1 by ATM was required to fully accelerate the IR-induced degradation of Cdc25A. Our results provide evidence that the mammalian S phase checkpoint functions via amplification of physiologically operating, Chk1-dependent mechanisms.
Resumo:
The present study aimed to 1) examine the relationship between laboratory-based measures and high-intensity ultraendurance (HIU) performance during an intermittent 24-h relay ultraendurance mountain bike race (similar to20 min cycling, similar to60min recovery), and 2) examine physiological and performance based changes throughout the HIU event. Prior to the HIU event, four highly-trained male cyclists (age = 24.0 +/- 2.1 yr; mass = 75.0 +/- 2.7 kg; (V)over dot O-2peak = 70 +/- 3 ml.kg(-1).min(-1)) performed 1) a progressive exercise test to determine peak Volume of oxygen uptake ((V)over dot O-2peak), peak power output (PPO), and ventilatory threshold (T-vent), 2) time-to-fatigue tests at 100% (TF100) and 150% of PPO (TF150), and 3) a laboratory simulated 40-km time trial (TT40). Blood lactate (Lac(-)), haematocrit and haemoglobin were measured at 6-h intervals throughout the HIU event, while heart rate (HR) was recorded continuously. Intermittent HIU performance, performance HR, recovery HR, and Lac declined (P < 0.05), while plasma volume expanded (P < 0.05) during the HIU event. TF100 was related to the decline in lap time (r = -0.96; P < 0.05), and a trend (P = 0.081) was found between TF150 and average intermittent HIU speed (r = 0.92). However, other measures (V)over dot O-2peak, PPO, T-vent, and TT40) were not related to HIU performance. Measures of high-intensity endurance performance (TF100, TF150) were better predictors of intermittent HIU performance than traditional laboratory-based measures of aerobic capacity.
Resumo:
Functional genomics is the systematic study of genome-wide effects of gene expression on organism growth and development with the ultimate aim of understanding how networks of genes influence traits. Here, we use a dynamic biophysical cropping systems model (APSIM-Sorg) to generate a state space of genotype performance based on 15 genes controlling four adaptive traits and then search this spice using a quantitative genetics model of a plant breeding program (QU-GENE) to simulate recurrent selection. Complex epistatic and gene X environment effects were generated for yield even though gene action at the trait level had been defined as simple additive effects. Given alternative breeding strategies that restricted either the cultivar maturity type or the drought environment type, the positive (+) alleles for 15 genes associated with the four adaptive traits were accumulated at different rates over cycles of selection. While early maturing genotypes were favored in the Severe-Terminal drought environment type, late genotypes were favored in the Mild-Terminal and Midseason drought environment types. In the Severe-Terminal environment, there was an interaction of the stay-green (SG) trait with other traits: Selection for + alleles of the SG genes was delayed until + alleles for genes associated with the transpiration efficiency and osmotic adjustment traits had been fixed. Given limitations in our current understanding of trait interaction and genetic control, the results are not conclusive. However, they demonstrate how the per se complexity of gene X gene X environment interactions will challenge the application of genomics and marker-assisted selection in crop improvement for dryland adaptation.
Resumo:
This paper describes a process-based metapopulation dynamics and phenology model of prickly acacia, Acacia nilotica, an invasive alien species in Australia. The model, SPAnDX, describes the interactions between riparian and upland sub-populations of A. nilotica within livestock paddocks, including the effects of extrinsic factors such as temperature, soil moisture availability and atmospheric concentrations of carbon dioxide. The model includes the effects of management events such as changing the livestock species or stocking rate, applying fire, and herbicide application. The predicted population behaviour of A. nilotica was sensitive to climate. Using 35 years daily weather datasets for five representative sites spanning the range of conditions that A. nilotica is found in Australia, the model predicted biomass levels that closely accord with expected values at each site. SPAnDX can be used as a decision-support tool in integrated weed management, and to explore the sensitivity of cultural management practices to climate change throughout the range of A. nilotica. The cohort-based DYMEX modelling package used to build and run SPAnDX provided several advantages over more traditional population modelling approaches (e.g. an appropriate specific formalism (discrete time, cohort-based, process-oriented), user-friendly graphical environment, extensible library of reusable components, and useful and flexible input/output support framework). (C) 2003 Published by Elsevier Science B.V.
Resumo:
Understanding the mechanism of liquid-phase evaporation in a three-phase fixed-bed reactor is of practical importance, because the reaction heat is usually 7-10 times the vaporization heat of the liquid components. Evaporation, especially the liquid dryout, can largely influence the reactor performance and even safety. To predict the vanishing condition of the liquid phase, Raoult's law was applied as a preliminary approach, with the liquid vanishing temperature defined based on a liquid flow rate of zero. While providing correct trends, Raoult's law exhibits some limitation in explaining the temperature profile in the reactor. To comprehensively understand the whole process of liquid evaporation, a set of experiments on inlet temperature, catalyst activity, liquid flow rate, gas flow rate, and operation pressure were carried out. A liquid-region length-predicting equation is suggested based on these experiments and the principle of heat balance.
Resumo:
MCM-41 periodic mesoporous silicates with a high degree of structural ordering are synthesized and used as model adsorbents to study the isotherm prediction of nitrogen adsorption. The nitrogen adsorption isotherm at 77 K for a macroporous silica is measured and used in high-resolution alpha(s)-plot comparative analysis to determine the external surface area, total surface area and primary mesopore volume of the MCM-41 materials. Adsorption equilibrium data of nitrogen on the different pore size MCM-41 samples (pore diameters from 2.40 to 4.92 nm) are also obtained. Based on the Broekhoff and de Boer' thermodynamic analysis, the nitrogen adsorption isotherms for the different pore size MCM-41 samples are interpreted using a novel strategy, in which the parameters of an empirical expression, used to represent the potential of interaction between the adsorbate and adsorbent, are obtained by fitting only the multilayer region prior to capillary condensation for C-16 MCM-41. Subsequently the entire isotherm, including the phase transition, is predicted for all the different pore size MCM-41 samples without any fitting. The results show that the prediction of multilayer adsorption and total adsorbed amount are in good agreement with the experimental isotherms. The predictions of the relative pressure corresponding to capillary equilibrium (coexistence) transition agree remarkably with experimental data on the adsorption branch even for hysteretic isotherms, confirming that this is the branch appropriate for pore size distribution analysis. The impact of pore radius on the adsorption film thickness and capillary coexistence pressure is also investigated, and found to agree with the experimental data. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Functional knowledge of the physiological basis of crop adaptation to stress is a prerequisite for exploiting specific adaptation to stress environments in breeding programs. This paper presents an analysis of yield components for pearl millet, to explain the specific adaptation of local landraces to stress environments in Rajasthan, India. Six genotypes, ranging from high-tillering traditional landraces to low-tillering open-pollinated modern cultivars, were grown in 20 experiments, covering a range of nonstress and drought stress patterns. In each experiment, yield components (particle number, grain number, 100 grain mass) were measured separately for main shoots, basal tillers, and nodal tillers. Under optimum conditions, landraces had a significantly lower grain yield than the cultivars, but no significant differences were observed at yield levels around 1 ton ha(-1). This genotype x environment interaction for grain yield was due to a difference in yield strategy, where landraces aimed at minimising the risk of a crop failure under stress conditions, and modem cultivars aimed at maximising yield potential under optimum conditions. A key aspect of the adaptation of landraces was the small size of the main shoot panicle, as it minimised (1) the loss of productive tillers during stem elongation; (2) the delay in anthesis if mid-season drought occurs; and (3) the reduction in panicle productivity of the basal tillers under stress. In addition, a low investment in structural panicle weight, relative to vegetative crop growth rate, promoted the production of nodal tillers, providing a mechanism to compensate for reduced basal tiller productivity if stress occurred around anthesis. A low maximum 100 grain mass also ensured individual grain mass was little affected by environmental conditions. The strategy of the high-tillering landraces carries a yield penalty under optimum conditions, but is expected to minimise the risk of a crop failure, particularly if mid-season drought stress occurs. The yield architecture of low-tillering varieties, by contrast, will be suited to end-of-season drought stress, provided anthesis is early. Application of the above adaptation mechanisms into a breeding program could enable the identification of plant types that match the prevalent stress patterns in the target environments. (C) 2003 E.J. van Oosterom. Published by Elsevier Science B.V. All rights reserved.