194 resultados para Movements


Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Respiratory activity of the diaphragm and other respiratory muscles is normally co-ordinated with their other functions, such as for postural control of the trunk when the limbs move. The integration may occur by summation of two inputs at the respiratory motoneurons. The present study investigated whether postural activity of the diaphragm changed when respiratory drive increased with hypercapnoea. 2. Electromyographic (EMG) recordings of the diaphragm and other trunk muscles were made with intramuscular electrodes in 13 healthy volunteers. Under control conditions and while breathing through increased dead-space,subjects made rapid repetitive arm movements to disturb the stability of the spine for four periods each lasting 10 s, separated by 50 s. 3. End-tidal CO2, and ventilation increased for the first 60-120 s of the trial then reached a plateau. During rapid arm movement at the start of dead-space breathing, diaphragm EMG became tonic with superimposed modulation at the frequencies of respiration and arm movement. However, when the arm was moved after 60 s of hypercapnoea, the tonic diaphragm EMG during expiration and the phasic activity with arm movement were reduced or absent. Similar changes occurred for the expiratory muscle transversus abdominis, but not for the erector spinae. The mean amplitude of intra-abdominal pressure and the phasic changes with arm movement were reduced after 60 s of hypercapnoea. 4. The present data suggest that increased central respiratory drive may attenuate the postural commands reaching motoneurons. This attenuation can affect the key inspiratory and expiratory muscles and is likely to be co-ordinated at a pre-motoneuronal site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the pattern of movement of young male and female rabbits and the genetic structures present in adult male and female populations in four habitats was examined. The level of philopatry in young animals was found to vary between 18-90% for males and 32-95% for females in different populations. It was skewed, with more males dispersing than females in some but not all populations. Analysis of allozyme data using spatial autocorrelation showed that adult females from the same social group, unlike males, were significantly related in four of the five populations studied. Changes in genetic structure and rate of dispersal were measured before and during the recovery of a population that was artificially reduced in size. There were changes in the rate and distance of dispersal with density and sex. Subadults of both sexes moved further in the first year post crash (low density) than in the following years. While the level of dispersal for females was lower than that of the males for the first 3 years, thereafter (high density) both sexes showed similar, low levels of dispersal (20%). The density at which young animals switch behaviour between dispersal and philopatry differed for males and females. The level of genetic structuring in adult females was high in the precrash population, reduced in the first year post crash and undetectable in the second year. Dispersal behaviour of rabbits both affects the genetic structure of the population and changes with conditions. Over a wide range of levels of philopatry, genetic structuring is present in the adult female, but not the male population. Consequently, though genetic structuring is present, it does not lead to inbreeding. More long-distance movements are found in low-density populations, even though vacant warrens are available near birth warrens. The distances moved decreased as density increased. Calculation of the effective population size (N-e) shows that changes in dispersal distance offset changes in density, so that N-e remains constant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of functional brain imaging in humans and single cell recordings in monkeys have generally shown preferential involvement of the medially located supplementary motor area (SMA) in self-initiated movement and the lateral premotor cortex in externally cued movement. Studies of event-related cortical potentials recorded during movement preparation, however, generally show increased cortical activity prior to self-initiated movements but little activity at early stages prior to movements that are externally cued at unpredictable times. In this study, the spatial location and relative timing of activation for self-initiated and externally triggered movements were examined using rapid event-related functional MRI. Twelve healthy right-handed subjects were imaged while performing a brief finger sequence movement (three rapid alternating button presses: index-middle-index finger) made either in response to an unpredictably timed auditory cue (between 8 to 24 s after the previous movement) or at self-paced irregular intervals. Both movement conditions involved similar strong activation of medial motor areas including the pre-SMA, SMA proper, and rostral cingulate cortex, as well as activation within contralateral primary motor, superior parietal, and insula cortex. Activation within the basal ganglia was found for self-initiated movements only, while externally triggered movements involved additional bilateral activation of primary auditory cortex. Although the level of SMA and cingulate cortex activation did not differ significantly between movement conditions, the timing of the hemodynamic response within the pre-SMA was significantly earlier for self-initiated compared with externally triggered movements. This clearly reflects involvement of the pre-SMA in early processes associated with the preparation for voluntary movement. (C) 2002 Elsevier Science.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Huntington's disease patients perform automatic movements in a bradykinetic manner, somewhat similar to patients with Parkinson's disease. Cortical activity relating to the preparation of movement in Parkinson's disease is significantly improved when a cognitive strategy is used. It is unknown whether patients with Huntington's disease can utilise an attentional strategy, and what effect this strategy would have on the premovement cortical activity. Movement-related potentials were recorded from 12 Huntington's disease patients and controls performing externally cued finger tapping movement, allowing an examination of cortical activity related to movement performance and bradykinesia in this disease. All subjects were tested in two conditions, which differed only by the presence or absence of the cognitive strategy. The Huntington's disease group, unlike controls, did not produce a rising premovement potential in the absence of the strategy. The Huntington's disease group did produce a rising premovement potential for the strategy condition, but the early slope of the potential was significantly reduced compared with the control group's early slope. These results are similar to those found previously with Parkinson's disease patients. The strategy may have put the task, which previously might have been under deficient automatic control, under attentional control. (C) 2002 Movement Disorder Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the kinematics and muscle activity associated with the standard sit-up, as a first step in the investigation of complex motor coordination. Eight normal human subjects lay on a force table and performed at least 15 sit-ups, with the arms across the chest and the legs straight and unconstrained. Several subjects also performed sit-ups with an additional weight added to the head. Support surface forces were recorded to calculate the location of the center of pressure and center of gravity; conventional motion analysis was used to measure segmental positions; and surface EMG was recorded from eight muscles. While the sit-up consists of two serial components, 'trunk curling' and 'footward pelvic rotation', it can be further subdivided into five phases, based on the kinematics. Phases I and II comprise trunk curling. Phase I consists of neck and upper trunk flexion, and phase II consists of lumbar trunk lifting. Phase II corresponds to the point of peak muscle contraction and maximum postural instability, the 'critical point' of the sit-up. Phases III-V comprise footward pelvic rotation. Phase III begins with pelvic rotation towards the feet. phase W with leg lowering, and phase V with contact between the legs and the support surface. The overall pattern of muscle activity was complex with times of EMG onset, peak activity, offset, and duration differing for different muscles. This complex pattern changed qualitatively from one phase to the next, suggesting that the roles of different muscles and, as a consequence, the overall form of coordination, change during the sit-up. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cortical activity associated with voluntary movement is shifted from medial to lateral premotor areas in Parkinson's disease. This occurs bilaterally, even for unilateral movements. We have used both EEG and MEG to further investigate medial and lateral premotor activity in patients with hemi-Parkinson's disease, in whom basal ganglia impairment is most pronounced in one hemisphere. The CNV, recorded from 21 scalp positions in a Go/NoGo task, was maximal over central medial regions in control subjects. For hemi-Parkinson's disease subjects, activity was shifted more frontally, reduced in the midline and lateralised towards the side of greatest basal ganglia impairment. With 143 channel whole-scalp magneto encephalography (MEG) we are further examining asymmetries in supplementary motor/premotor cortical activity prior to self-paced voluntary movement. In preliminary results, one hemi-Parkinson's disease patient with predominantly left-side symptoms showed strong medial activity consistent with a dominant source in the left supplementary motor area (SMA). Three patients showed little medial activity, but early bilateral sources within lateral premotor cortex. Results suggest greater involvement of lateral premotor rather than the SMA prior to movement in Parkinson's disease and provide evidence for asymmetric function of the SMA in hemi- Parkinson's disease, with reduced activity on the side of greatest basal ganglia deficit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the recruitment behaviour of low threshold motor units in flexor digitorum superficialis by altering two biomechanical constraints: the load against which the muscle worked and the initial muscle length. The load was increased using isotonic (low load), loaded dynamic (intermediate load) and isometric (high load) contractions in two studies. The initial muscle position reflected resting muscle length in series A, and a longer length with digit III fully extended in series B. Intramuscular EMG was recorded from 48 single motor units in 10 experiments on five healthy subjects, 21 units in series A and,27 in series B, while subjects performed ramp up, hold and ramp down contractions. Increasing the load on the muscle decreased the force, displacement and firing rate of single motor units at recruitment at shorter muscle lengths (P < 0.001, dependent t-test). At longer muscle lengths this recruitment pattern was observed between loaded dynamic and isotonic contractions, but not between isometric and loaded dynamic contractions. Thus, the recruitment properties of single motor units in human flexor digitorum superficialis are sensitive to changes in both imposed external loads and the initial length of the muscle. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The supplementary motor area (SMA) is thought to play in important role in the preparation and organisation of voluntary movement. It has long been known that cortical activity begins to increase up to 2 s prior to voluntary self-initiated movement. This increasing premovement activity measured in EEG is known as the Bereitschaftspotential or readiness potential. Modern functional brain imaging methods, using event-related and time-resolved functional MRI techniques, are beginning to reveal the role of the SMA, and in particular the more anterior pre-SMA, in premovement activity associated with the readiness for action. In this paper we review recent studies using event-related time-resolved fMRI methods to examine the time-course of activation changes within the SMA throughout the preparation, readiness and execution of action. These studies suggest that the preSMA plays a common role in encoding or representing actions prior to our own voluntary self-initiated movements, during motor imagery, and from the observation of others' actions. We suggest that the pre-SMA generates and encodes motor representations which are then maintained in readiness for action. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light is generally regarded as the most likely cue used by zooplankton to regulate their vertical movements through the water column. However, the way in which light is used by zooplankton as a cue is not well understood. In this paper we present a mathematical model of diel vertical migration which produces vertical distributions of zooplankton that vary in space and time. The model is used to predict the patterns of vertical distribution which result when animals are assumed to adopt one of three commonly proposed mechanisms for vertical swimming. First, we assume zooplankton tend to swim towards a preferred intensity of light. We then assume zooplankton swim in response to either the rate of change in light intensity or the relative rate of change in light intensity. The model predicts that for all three mechanisms movement is fastest at sunset and sunrise and populations are primarily influenced by eddy diffusion at night in the absence of a light stimulus. Daytime patterns of vertical distribution differ between the three mechanisms and the reasons for the predicted differences are discussed. Swimming responses to properties of the light field are shown to be adequate for describing diel vertical migration where animals congregate in near surface waters during the evening and reside at deeper depths during the day. However, the model is unable to explain how some populations halt their ascent before reaching surface waters or how populations re-congregate in surface waters a few hours before sunrise, a phenomenon which is sometimes observed in the held. The model results indicate that other exogenous or endogenous factors besides light may play important roles in regulating vertical movement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Little consensus exists in the literature regarding methods for determination of the onset of electromyographic (EMG) activity. The aim of this study was to compare the relative accuracy of a range of computer-based techniques with respect to EMG onset determined visually by an experienced examiner. Twenty-seven methods were compared which varied in terms of EMG processing (low pass filtering at 10, 50 and 500 Hz), threshold value (1, 2 and 3 SD beyond mean of baseline activity) and the number of samples for which the mean must exceed the defined threshold (20, 50 and 100 ms). Three hundred randomly selected trials of a postural task were evaluated using each technique. The visual determination of EMG onset was found to be highly repeatable between days. Linear regression equations were calculated for the values selected by each computer method which indicated that the onset values selected by the majority of the parameter combinations deviated significantly from the visually derived onset values. Several methods accurately selected the time of onset of EMG activity and are recommended for future use. Copyright (C) 1996 Elsevier Science Ireland Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Purpose. Activity of the trunk muscles is essential for maintaining stability of the lumbar spine because of the unstable structure of that portion of the spine. A model involving evaluation of the response of the lumbar multifidus and abdominal muscles to leg movement was developed to evaluate this function. Subjects. To examine this function in healthy persons, 9 male and 6 female subjects (mean age = 20.6 years, SD = 2.3) with no history of low back pain were studied. Methods. Fine-wire and surface electromyography electrodes were used to record the activity of selected trunk muscles and the prime movers for hip flexion, abduction, and extension during hip movements in each of these directions. Results. Trunk muscle activity occurring prior to activity of the prime mover of the limb was associated with hip movement in each direction. The transversus abdominis (TrA) muscle was invariably the first muscle that was active. Although reaction time for the TrA and oblique abdominal muscles was consistent across movement directions, reaction time for the rectus abdominis and multifidus muscles varied with the direction of limb movement. Conclusion and Discussion. Results suggest that the central nervous st stem deals with stabilization of the spine by contraction of the abdominal and multifidus muscles in anticipation of reactive forces produced by limb movement. The TrA and oblique abdominal muscles appear to contribute to a function not related to the direction of these forces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although planning is important for the functioning of patients with dementia of the Alzheimer Type (DAT), little is known about response programming in DAT. This study used a cueing paradigm coupled with quantitative kinematic analysis to document the preparation and execution of movements made by a group of 12 DAT patients and their age and sex matched controls. Participants connected a series of targets placed upon a WACOM SD420 graphics tablet, in response to the pattern of illumination of a set of light emitting diodes (LEDs). In one condition, participants could programme the upcoming movement, whilst in another they were forced to reprogramme this movement on-line (i.e. they were not provided with advance information about the location of the upcoming target). DAT patients were found to have programming deficits, taking longer to initiate movements; particularly in the absence of cues. While problems spontaneously programming a movement might cause a greater reliance upon on-line guidance, when both groups were required to guide the movement on-line, DAT patients continued to show slower and less efficient movements implying declining sensori-motor function; these differences were not simply due to strategy or medication status. (C) 1997 Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to quantify the efficiency and smoothness of voluntary movement in Huntington's disease (HD) by the use of a graphics tablet that permits analysis of movement profiles. In particular, we aimed to ascertain whether a concurrent task (digit span) would affect the kinematics of goal-directed movements. Twelve patients with HD and their matched controls performed 12 vertical zig-zag movements, with both left and right hands (with and without the concurrent task), to large or small circular targets over long or short extents. The concurrent task was associated with shorter movement times and reduced right-hand superiority. Patients with HD were overall slower, especially with long strokes, and had similar peak velocities for both small and large targets, so that controls could better accommodate differences in target size. Patients with HD spent more time decelerating, especially with small targets, whereas controls allocated more nearly equal proportions of time to the acceleration and deceleration phases of movement, especially with large targets. Short strokes were generally less force inefficient than were long strokes, especially so for either hand in either group in the absence of the concurrent task, and for the right hand in its presence. With the concurrent task, however, the left hand's behavior changed differentially for the two groups; for patients with HD, it became more force efficient with short strokes and even less efficient with long strokes, whereas for controls, it became more efficient with long strokes. Controls may be able to divert attention away from the inferior left hand, increasing its automaticity, whereas patients with HD, because of disease, may be forced to engage even further online visual control under the demands of a concurrent task. Patients with HD may perhaps become increasingly reliant on terminal visual guidance, which indicates an impairment in constructing and refining an internal representation of the movement necessary for its. effective execution. Basal ganglia dysfunction may impair the ability to use internally generated cues to guide movement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives-This study adopted a concurrent task design and aimed to quantify the efficiency and smoothness of voluntary movement in Tourette's syndrome via the use of a graphics tablet which permits analysis of movement profiles. In particular, the aim was to ascertain whether a concurrent task (digit span) would affect the kinematics of goal directed movements, and whether patients with Tourette's syndrome would exhibit abnormal functional asymmetries compared with their matched controls. Methods-Twelve patients with Tourette's syndrome and their matched controls performed 12 vertical zig zag movements, with both left and right hands (with and without the concurrent task), to large or small targets over long or short extents. Results-With short strokes, controls showed the predicted right hand superiority in movement time more strongly than patients with Tourette's syndrome, who instead showed greater hand symmetry with short strokes. The right hand of controls was less force efficient with long strokes and more force efficient with short strokes, whereas either hand of patients with Tourette's syndrome was equally force efficient, irrespective of stroke length, with an overall performance profile similar to but better than that of the controls' left hand. The concurrent task, however, increased the force efficiency of the right hand in patients with Tourette's syndrome and the left hand in controls. Conclusions-Patients with Tourette's syndrome, compared with controls, were not impaired in the performance of fast, goal directed movements such as aiming at targets; they performed in certain respects better than controls. The findings clearly add to the growing literature on anomalous lateralisation in Tourette's syndrome, which may be explained by the recently reported loss of normal basal ganglia asymmetries in that disorder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Movement-related potentials (MRPs) associated with voluntary movements reflect cortical activity associated with processes Of movement preparation and movement execution. Early-stage pre-movement activity is reduced in amplitude in Parkinson's disease. However it is unclear whether this neurophysiological deficit relates to preparatory or execution-related activity, since previous studies have not been able to separate different functional components of MRPs. Motor imagery is thought to involve mainly processes of movement preparation, with reduced involvement of end-stage movement execution-related processes. Therefore, MRP components relating to movement preparation and execution may be examined separately by comparing MRPs associated with imagined and actual movements. In this study, MRPs were recorded from 14 subjects with Parkinson's disease and 10 age-matched control subjects while they performed a sequential button-pressing task, and while they imagined performance of the same task. Early-stage pre-movement activity was present in both Parkinson's disease patients and control subjects when they imagined movement, but was reduced in amplitude compared with that for actual movement. Movement execution-related components, arising predominantly from the primary motor cortex, were relatively unaffected in Parkinson's disease subjects. However motor preparatory processes, probably involving the supplementary motor area, were reduced in amplitude overall and abnormally prolonged, Indicating impaired termination following the motor response. Further this impaired termination of preparatory-phase activity was observed only in patients with more severe parkinsonian symptoms, and not in early-stage Parkinson's disease.