152 resultados para Fishes -- Histology
Resumo:
Microhabitat use and feeding behavior of the rainbowfish Melanotaenia duboulayi (Castelnau) were investigated in a slow-flowing stream adjacent to riparian forest in south-eastern Queensland, Australia. Fish were more abundant in vegetated areas, but did not enter dense Vallisneria beds, where predators were observed. In sunny conditions shoals of juveniles occurred near the water surface feeding floating material on the surface, but larger fish tended to occur at the bottom near submerged vegetation, often utilizing the overhanging aquatic plant community as a refuge and food source. In the middle of the day, juveniles and small fish seemed to show behavioral thermoregulation at the surface in the warmest site. Under cloudy conditions, however, fish of all sizes preferred deeper water. The present study suggests that in still and sunny pools thermal change caused by sunlight influences the microhabitat choice of small fish. A field experiment using a kingfisher model implies that fish swimming at the surface could escape from aerial predators in sunlit conditions by responding to moving shadows, but could not do so under cloudy conditions.
Resumo:
Toxic (Gobiodon spp.) and non-toxic (Paragobiodon xanthosomus) gobies became infected with external parasites (gnathiid isopods) at equal rates in a laboratory experiment. Parasites were evenly distributed over the body of P. xanthosomus but were mostly confined to the fins of Gobiodon spp., where toxin glands are less abundant. Skin toxins were not associated with the rate of infection but their distribution did appear to influence the site of parasite attachment. (C) 2003 The Fisheries Society of the British Isles.
Resumo:
Marine reserves have been widely touted as a promising strategy for managing fisheries and protecting marine biodiversity. However, their establishment can involve substantial social conflict and may not produce the anticipated biological and economic benefits. A crucial factor associated with the success of marine reserves for enhancing fisheries and protecting biodiversity is the spatial distribution of fishing activity. Fishers may be attracted to the perimeter of a reserve in expectation of spillover of adult fishes. This concentration of effort can reduce spillover of fish to the surrounding fishery and has major implications for the effectiveness of reserves in achieving ecological and socioeconomic goals. We examined the spatial distribution of fishing activity relative to California's Big Creek Marine Ecological Reserve and found no aggregation near the reserve. We discuss the factors driving the spatial distribution of fishing activity relative to the reserve and the relevance of that distribution to the performance and evaluation of marine reserves.
Resumo:
Several schemes have been developed to help select the locations of marine reserves. All of them combine social, economic, and biological criteria, and few offer any guidance as to how to prioritize among the criteria identified. This can imply that the relative weights given to different criteria are unimportant. Where two sites are of equal value ecologically; then socioeconomic criteria should dominate the choice of which should be protected. However, in many cases, socioeconomic criteria are given equal or greater weight than ecological considerations in the choice of sites. This can lead to selection of reserves with little biological value that fail to meet many of the desired objectives. To avoid such a possibility, we develop a series of criteria that allow preliminary evaluation of candidate sites according to their relative biological values in advance of the application of socioeconomic criteria. We include criteria that,. while not strictly biological, have a strong influence on the species present or ecological processes. Out scheme enables sites to be assessed according to their biodiversity, the processes which underpin that diversity, and the processes that support fisheries and provide a spectrum of other services important to people. Criteria that capture biodiversity values include biogeographic representation, habitat representation and heterogeneity, and presence of species or populations of special interest (e.g., threatened species). Criteria that capture sustainability of biodiversity and fishery values include the size of reserves necessary to protect viable habitats, presence of exploitable species, vulnerable life stages, connectivity among reserves, links among ecosystems, and provision of ecosystem services to people. Criteria measuring human and natural threats enable candidate sites to be eliminated from consideration if risks are too great, but also help prioritize among sites where threats can be mitigated by protection. While our criteria can be applied to the design of reserve networks, they also enable choice of single reserves to be made in the context of the attributes of existing protected areas. The overall goal of our scheme is to promote the development of reserve networks that will maintain biodiversity and ecosystem functioning at large scales. The values of eco-system goods and services for people ultimately depend on meeting this objective.
Resumo:
The ability to recall the location of a predator and later avoid it was tested in nine populations of rainbowfish (Melanotaenia spp.), representing three species from a variety of environments. Following the introduction of a model predator into a particular microhabitat, the model was removed, the arena rotated and the distribution of the fish recorded again. In this manner it could be determined what cues the fish relied on in order to recall the previous location of the predator model. Fish from all populations but one (Dirran Creek) were capable of avoiding the predator by remembering either the location and/or the microhabitat in which the predator was recently observed. Reliance on different types of visual cues appears to vary between populations but the reason for this variation remains elusive. Of the ecological variables tested (flow variability, predator density and habitat complexity), only the level of predation appeared to be correlated with the orientation technique employed by each population. There was no effect of species identity, which suggests that the habitat that each population occupies plays a strong role in the development of both predator avoidance responses and the cues used to track predators in the wild.
Resumo:
The spermatozoa of Gymnophiona show the following autapomorphies: 1) penetration of the distal centriole by the axial fiber; 2) presence of an acrosomal baseplate; 3) presence of an acrosome seat (flattened apical end of nucleus); and 4) absence of juxta-axonemal fibers. The wide separation of the plasma membrane bounding the undulating membrane is here also considered to be apomorphic. Three plesiomorphic spermatozoal characters are recognized that are not seen in other Amphibia but occur in basal amniotes: 1) presence of mitochondria with a delicate array of concentric cristae (concentric cristae of salamander spermatozoa differ in lacking the delicate array); 2) presence of peripheral dense fibers associated with the triplets of the distal centriole; and 3) presence of a simple annulus (a highly modified, elongate annulus is present in salamander sperm). The presence of an endonuclear canal containing a perforatorium is a plesiomorphic feature of caecilian spermatozoa that is shared with urodeles, some basal anurans, sarcopterygian fish, and some amniotes. Spermatozoal synapornorphies are identified for 1) the Uraeotyphlidae and Ichthyophiidae, an 2) the Caeciliidae and Typhlonectidae, suggesting that the members of each pair of families are more closely related to each other than to other caecilians. Although caecilian spermatozoa exhibit the clear amphibian synapomorphy of the unilateral location of the undulating membrane and its axial fiber, they have no apomorphic characters that suggest a closer relationship to either the Urodela or Axiura. J. Morphol. 258:179-192, 2003. (C) 2003 Wiley-Liss, Inc.
Resumo:
ATP-dependent K+ channels (K-ATP) account for most of the recycling of K+ which enters the proximal tubules cell via Na, K-ATPase. In the mitochondrial membrane, opening of these channels preserves mitochondrial viability and matrix volume during ischemia. We examined KATP channel modulation in renal ischemia-reperfusion injury (IRI), using an isolated perfused rat kidney (IPRK) model, in control, IRI, IRI + 200 muM diazoxide (a K-ATP opener), IRI + 10 muM glibenclamide (a K-ATP blocker) and IRI + 200 muM diazoxide + 10 muM glibenclamide groups. IRI was induced by 2 periods of warm ischemia, followed by 45 min of reperfusion. IRI significantly decreased glomerular filtration rate (GFR) and increased fractional excretion of sodium (FENa) (p < 0.01). Neither diazoxide nor glibenclamide had an effect on control kidney function other than an increase in renal vascular resistance produced by glibenclamide. Pretreatment with 200 muM diazoxide reduced the postischemic increase in FENa (p < 0.05). Adding 10 muM glibenclamide inhibited the diazoxide effect on postischemic FENa (p < 0.01). Histology showed that kidneys pretreated with glibenclamide demonstrated an increase in injure in the thick ascending limb of outer medulla (p < 0.05). Glibenclamide significantly decreased post ischemic renal vascular resistance (p < 0.05). but had no significant effect on other renal function parameters. Our results suggest that sodium reabsorption is improved by K-ATP activation and blockade of K-ATP channels during IRI has an injury enhancing effect on renal epithelial function and histology. This may be mediated through K-ATP modulation in cell and or mitochondrial inner membrane.
Resumo:
Complete small subunit ribosomal RNA gene (ssrDNA) and partial (D1-D3) large subunit ribosomal RNA gene (lsrDNA) sequences were used to estimate the phylogeny of the Digenea via maximum parsimony and Bayesian inference. Here we contribute 80 new ssrDNA and 124 new lsrDNA sequences. Fully complementary data sets of the two genes were assembled from newly generated and previously published sequences and comprised 163 digenean taxa representing 77 nominal families and seven aspidogastrean outgroup taxa representing three families. Analyses were conducted on the genes independently as well as combined and separate analyses including only the higher plagiorchiidan taxa were performed using a reduced-taxon alignment including additional characters that could not be otherwise unambiguously aligned. The combined data analyses yielded the most strongly supported results and differences between the two methods of analysis were primarily in their degree of resolution. The Bayesian analysis including all taxa and characters, and incorporating a model of nucleotide substitution (general-time-reversible with among-site rate heterogeneity), was considered the best estimate of the phylogeny and was used to evaluate their classification and evolution. In broad terms, the Digenea forms a dichotomy that is split between a lineage leading to the Brachylaimoidea, Diplostomoidea and Schistosomatoidea (collectively the Diplostomida nomen novum (nom. nov.)) and the remainder of the Digenea (the Plagiorchiida), in which the Bivesiculata nom. nov. and Transversotremata nom. nov. form the two most basal lineages, followed by the Hemiurata. The remainder of the Plagiorchiida forms a large number of independent lineages leading to the crown clade Xiphidiata nom. nov. that comprises the Allocreadioidea, Gorgoderoidea, Microphalloidea and Plagiorchioidea, which are united by the presence of a penetrating stylet in their cercariae. Although a majority of families and to a lesser degree, superfamilies are supported as currently defined, the traditional divisions of the Echinostomida, Plagiorchiida and Strigeida were found to comprise non-natural assemblages. Therefore, the membership of established higher taxa are emended, new taxa erected and a revised, phylogenetically based classification proposed and discussed in light of ontogeny, morphology and taxonomic history. (C) 2003 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Much is known about those aspects of tuna health which can be studied in wild populations, e.g. helminth parasites. However, because aquaculture of these species is in its infancy, knowledge of microbial, nutritional and environmental diseases is limited. This review is an attempt to bring together the available information on those diseases of Thunnus spp. which cause significant morbidity, mortality or economic loss. In doing so it has become clear that much more research needs to be undertaken on the physiology of the species (southern, northern and Pacific bluefin tuna) currently used in aquaculture in order for the pathogenesis of some conditions to be properly understood. Attempts at hatchery culture of Pacific bluefin tuna has indicated that Thunnus spp. will be problematic to hatch and propagate.
Resumo:
The following species are described from Platax spp.: Neomultitestis aspidogastriformis n. sp., from P. teira, off Heron Island, Queensland, which can be distinguished from its congeners by the transversely elongate ventral sucker divided into three loculi and probably by testis number; Multitestis magnacetabulum Mamaev, 1970, from P. teira, off Heron Island, Queensland; Diploproctodaeum rutellum ( Mamaev, 1970), from P. teira, off Heron Island, Queensland; Diploproctodaeum tsubameuo n. sp., from P. batavianus, from the Swain Reefs, off Queensland, which differs from its congeners in its overlapping, posteriorly attenuated testes and 38-55 ovarian lobes; and Diplocreadium sp., from P. batavianus, from the Swain Reefs, off Queensland.
Resumo:
We use a new molecular phylogeny, developed from small and large subunit ribosomal RNA genes, to explore evolution of the digenean life cycle. Our approach is to map character states on the phylogeny and then use parsimony to infer how the character evolved. We conclude that, plesiomorphically, digenean miracidia hatched from eggs and penetrated gastropod first intermediate hosts externally. Fork-tailed cercariae were produced in rediae and emerged from the snail to be eaten directly by the teleost definitive host. These plesiomorphic characters are seen in extant Bivesiculidae. We infer that external encystment and the use of second intermediate hosts are derived from this behaviour and that second intermediate hosts have been adopted repeatedly. Tetrapod definitive hosts have also been adopted repeatedly. The new phylogeny proposes a basal dichotomy between 'Diplostomida' (Diplostomoidea, Schistosomatoidea and Brachylaimoidea) and 'Plagiorchiida' (all other digeneans). There is no evidence for coevolution between these clades and groups of gastropods. The most primitive life cycles are seen in basal Plagiorchiida. Basal Diplostomida have three-host life cycles and are associated with tetrapods. The blood flukes (Schistosomatoidea) are inferred to have derived their two-host life cycles by abbreviating three-host cycles. Diplostomida have no adult stages in fishes except by life cycle abbreviation. We present and test a radical hypothesis that the blood-fluke cycle is plesiomorphic within the Diplostomida.
Resumo:
Intraerythrocytic bodies identified as haemogregarine gamonts were found in 29% of 97 brown tree snakes (Boiga irregularis) examined during a haematological survey of reptiles in Australasia during 1994-1998. The morphological characteristics of the parasites were consistent with those of Haemogregarina boigae Mackerras, 1961, although the gamonts were slightly larger and lacked red caps but contained distinctive polar grey capsules. Gamonts did not distend host cells but laterally displaced their nuclei. They were contained within parasitophorous vacuoles and possessed typical apicomplexan organelles, including a conoid, polar rings, rhoptries and micronemes. Schizonts producing up to 30 merozoites were detected in endothelial cells of the lungs of 11 snakes. The absence of erythrocytic schizogony suggests the parasites belong to the genus Hepatozoon. Electron microscopy also revealed the presence of curious encapsulated organisms in degenerating erythrocytes. These stages did not possess apical complex organelles and were surrounded by thick walls containing circumferential junctions and interposed strips reminiscent of oocyst sutures.
Resumo:
Background - Marfan syndrome (MS) is a genetic disorder caused by a mutation in the fibrillin gene FBN1. Bicuspid aortic valve (BAV) is a congenital heart malformation of unknown cause. Both conditions are associated with ascending aortic aneurysm and premature death. This study examined the relationship among the secretion of extracellular matrix proteins fibrillin, fibronectin, tenascin, and vascular smooth muscle cell (VSMC) apoptosis. The role of matrix metalloproteinase (MMP)- 2 in VSMC apoptosis was studied in MS aneurysm. Methods and Results - Aneurysm tissue was obtained from patients undergoing surgery ( MS: 4 M, 1 F, age 27 - 45 years; BAV: 3 M, 2 F, age 28 - 65 years). Normal aorta from subjects with nonaneurysm disease was also collected ( 4 M, 1 F, age 23 - 93 years). MS and BAV aneurysm histology showed areas of cystic medial necrosis (CMN) without inflammatory infiltrate. Immunohistochemical study of cultured MS and BAV VSMC showed intracellular accumulation and reduction of extracellular distribution of fibrillin, fibronectin, and tenascin. Western blot showed no increase in expression of fibrillin, fibronectin, or tenascin in MS or BAV VSMC and increased expression of MMP-2 in MS VSMCs. There was 4-fold increase in loss of cultured VSMC incubated in serum-free medium for 24 hours in both MS ( 27 +/- 8%) and BAV ( 32 +/- 14%) compared with control ( 7 +/- 5%). Conclusions - In MS and BAV there is alteration in both the amount and quality of secreted proteins and an increased degree of VSMC apoptosis. Up-regulation of MMP-2 might play a role in VSMC apoptosis in MS VSMC. The findings suggest the presence of a fundamental cellular abnormality in BAV thoracic aorta, possibly of genetic origin.
Resumo:
While the lungfish dentition is partially understood as far as morphology and light microscopic structure is concerned, the ultrastructure is not. Each tooth plate is associated with a dental lamina that develops from the inner layer of endodermal cells that form the oral epithelium. Dentines, bone and cartilage of the jaws differentiate from mesenchyme cells aggregating beneath the oral endothelium. Enamel, in the developing and in the mature form, has similarities to that of other early vertebrates, but unusual characters appear as development proceeds. Ameloblasts are capable of secreting enamel, and, with mononuclear osteoclasts, of remodelling the bone below the tooth plate. The forms of dentine, all based largely on an extracellular matrix of collagen and mineralised with biological apatite, differ from each other and from the underlying bone in the ultrastructure of associated cells and in the mineralised extracellular matrices produced. Cell processes emerging from the odontoblasts and from the osteoblasts vary in length, degree of branching and of anastomoses between the processes, although all of the cell types have large amounts of rough endoplasmic reticulum. Mineralisation of the extracellular matrices varies among the enamel, dentines and bone in the tooth plate. In addition, the development of the hard tissues of the tooth plates indicates that many of the similarities in fine structure of the dentition in lungfish, to tissues in other fish and amphibia, apparent early in development, disappear as the dentition matures. (C) 2003 Elsevier Ltd. All rights reserved.