194 resultados para Fire safety design
Resumo:
Nest use, home-range characteristics and nightly movements by the northern bettong (Bettongia tropica) were examined before and after a low- to moderate-intensity fire in sclerophyll woodland in north-eastern Australia using radio-telemetry. In all, 23 animals were radio-tracked at three-month intervals between February 1995 and May 1996. During November 1995 a low- intensity experimental fire burned the entire home range of most animals. The northern bettong appeared fairly catholic in choice of nest site, with a variety of nest locations and nesting materials used. Prior to the fire, nests were generally located in areas of dense cover, such as the skirts of grass trees (46%) or grass close to a log (29%). After fire removed most ground cover in the nesting areas of most animals, bettongs used remaining shelter such as boulder piles (45%), recently fallen trees (8%) and patches of unburnt vegetation (21%). Nest areas (10.1 ha) of males were significantly larger than those of females (5.4 ha). Home ranges of both sexes were large (59 ha) and most ranges lacked distinct core areas, suggesting that bettongs used all parts of their home ranges equally. High mean rates of nightly movement by the northern bettong indicated that large distances were moved within home ranges during nightly foraging. No significant fire-related changes were detected in home-range size, home-range location, nest-area location or mean rates of nightly movement, suggesting that the northern bettong is well adapted to the low- and medium-intensity fires that characterise its habitat.
Resumo:
Objective. To examine the feasibility and safety of a low anterior resection of the rectosigmoid plus adjacent pelvic tumour as part of primary cytoreduction for ovarian cancer. Methods. This study included 65 consecutive patients with primary ovarian cancer who had debulking surgery from 1996 through 2000. All patients underwent an en bloc resection of ovarian cancer and a rectosigmoid resection followed by an end-to-end anastomosis. Parameters for safety and efficacy were considered as primary statistical endpoints for the aim of this analysis. Results. Postoperative residual tumour was nil, 1 cm in 14, 34, and 14 patients, respectively. The median postoperative hospital stay was 11 days (range, 6 to 50 days). Intraoperative complications included an injury to the urinary bladder in one patient. Postoperative complications included wound complications (n=14, 21.5%), septicemia (n=9, 13.8%), cardiac complications (n=7, 10.8%), thromboembolic complications (n=5, 7.7%) ileus (n=2, 3.1%) anastomotic leak (n=2, 3.1%) and fistula (n=1, 1.5%). Reasons for a reoperation during the same admission included repair of an anastomotic leak (n=1), postoperative hemorrhage (n=1), and wound debridement (n=1). Wound complications, septicemia, and anastomotic leak formation were more frequent in patients who had a serum albumin level of less than or equal to 30 g/L preoperatively. There was one surgically related mortality in a patient who died from a cerebral vascular accident 2 days postoperatively. Conclusions. An en bloc resection as part of primary cytoreductive surgery for ovarian cancer is effective and its morbidity is acceptably low. (C) 2001 Academic Press.
Resumo:
An inverse, current density mapping (CDM) method has been developed for the design of elliptical cross-section MRI magnets. The method provides a rapid prototyping system for unusual magnet designs, as it generates a 3D current density in response to a set of target field and geometric constraints. The emphasis of this work is on the investigation of new elliptical coil structures for clinical MRI magnets. The effect of the elliptical aspect ratio on magnet performance is investigated. Viable designs are generated for symmetric, asymmetric and open architecture elliptical magnets using the new method. Clinically relevant attributes such as reduced stray field and large homogeneous regions relative to total magnet length are included in the design process and investigated in detail. The preliminary magnet designs have several novel features.
Resumo:
In this work, a new method of optimization is successfully applied to the theoretical design of compact, actively shielded, clinical MRI magnets. The problem is formulated as a two-step process in which the desired current densities on multiple, cc-axial surface layers are first calculated by solving Fredholm equations of the first kind. Non-linear optimization methods with inequality constraints are then invoked to fit practical magnet coils to the desired current densities. The current density approach allows rapid prototyping of unusual magnet designs. The emphasis of this work is on the optimal design of short, actively-shielded MRI magnets for whole-body imaging. Details of the hybrid numerical model are presented, and the model is used to investigate compact, symmetric, and asymmetric MRI magnets. Magnet designs are presented for actively-shielded, symmetric magnets of coil length 1.0 m, which is considerably shorter than currently available designs of comparable dsv size. Novel, actively-shielded, asymmetric magnet designs are also presented in which the beginning of a 50-cm dsv is positioned just 11 cm from the end of the coil structure, allowing much improved access to the patient and reduced patient claustrophobia. Magn Reson Med 45:331540, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
New designs for force-minimized compact high-field clinical MRI magnets are described. The design method is a modified simulated annealing (SA) procedure which includes Maxwell forces in the error function to be minimized. This permits an automated force reduction in the magnet designs while controlling the overall dimensions of the system. As SA optimization requires many iterations to achieve a final design, it is important that each iteration in the procedure is rapid. We have therefore developed a rapid force calculation algorithm. Novel designs for short 3- and 4-T clinical MRI systems are presented in which force reduction has been invoked. The final designs provide large homogeneous regions and reduced stray fields in remarkable short magnets. A shielded 4-T design that is approximately 30% shorter than current designs is presented. This novel magnet generates a full 50-cm diameter homogeneous region.
Resumo:
Penalizing line management for the occurrence of lost time injuries has in some cases had unintended negative consequences. These are discussed. An alternative system is suggested that penalizes line management for accidents where the combination of the probability of recurrence and the maximum reasonable consequences such a recurrence may have exceeds an agreed limit. A reward is given for prompt effective control of the risk to below the agreed risk limit. The reward is smaller than the penalty. High-risk accidents require independent investigation by a safety officer using analytical techniques. Two case examples are given to illustrate the system. Continuous safety improvement is driven by a planned reduction in the agreed risk limit over time and reward for proactive risk assessment and control.
Resumo:
The problem of designing spatially cohesive nature reserve systems that meet biodiversity objectives is formulated as a nonlinear integer programming problem. The multiobjective function minimises a combination of boundary length, area and failed representation of the biological attributes we are trying to conserve. The task is to reserve a subset of sites that best meet this objective. We use data on the distribution of habitats in the Northern Territory, Australia, to show how simulated annealing and a greedy heuristic algorithm can be used to generate good solutions to such large reserve design problems, and to compare the effectiveness of these methods.
Resumo:
Objectives: To document and describe the effects of woodstove burns in children. To identify how these accidents occur so that a prevention strategy can be devised. Design, Patients and Setting: Retrospective departmental database and case note review of all children with woodstove burns seen at the Burns Unit of a Tertiary Referral Children's Hospital between January 1997 and September 2001. Main outcome measures: Number and ages of children burned: circumstances of the accidents; injuries-sustained, treatment-required and long-term sequelae. Results. Eleven children, median age 1.0 year, sustained burns, usually to the hands, of varying thickness. Two children required skin grafting and five required scar therapy. Seven children intentionally placed their hands onto the Outside of the stove. In all children, burns occurred despite adult supervision Conclusions: Woodstoves area cause of burns in children. These injuries are associated with significant morbidity and financial costs. Through public education, woodstove burns can easily be prevented utilising simple safety measures. (C) 2002 Elsevier Science Ltd and ISBI All rights reserved.
Resumo:
Novel current density mapping (CDM) schemes are developed for the design of new actively shielded, clinical magnetic resonance imaging (MRI) magnets. This is an extended inverse method in which the entire potential solution space for the superconductors has been considered, rather than single current density layers. The solution provides an insight into the required superconducting coil pattern for a desired magnet configuration. This information is then used as an initial set of parameters for the magnet structure, and a previously developed hybrid numerical optimization technique is used to obtain the final geometry of the magnet. The CDM scheme is applied to the design of compact symmetric, asymmetric, and open architecture 1.0-1.5 T MRI magnet systems of novel geometry and utility. A new symmetric 1.0-T system that is just I m in length with a full 50-cm diameter of the active, or sensitive, volume (DSV) is detailed, as well as an asymmetric system in which a 50-cm DSV begins just 14 cm from the end of the coil structure. Finally a 1.0-T open magnet system with a full 50-cm DSV is presented. These new designs provide clinically useful homogeneous regions and have appropriately restricted stray fields but, in some of the designs, the DSV is much closer to the end of the magnet system than in conventional designs. These new designs have the potential to reduce patient claustrophobia and improve physician access to patients undergoing scans. (C) 2002 Wiley Periodicals, Inc.
Resumo:
Radio-frequency (RF) coils are a necessary component of magnetic resonance imaging (MRI) systems. When used in transmit operation, they act to generate a homogeneous RF magnetic field within a volume of interest and when in receive operation, they act to receive the nuclear magnetic resonance signal from the RF-excited specimen. This paper outlines a procedure for the design of open RF coils using the time-harmonic inverse method. This method entails the calculation of an ideal current density on a multipaned planar surface that would generate a specified magnetic field within the volume of interest. Because of the averaging effect of the regularization technique in the matrix solution, the specified magnetic field is shaped within an iterative procedure until the generated magnetic field matches the desired magnetic field. The stream-function technique is used to ascertain conductor positions and a method of moments package is then used to finalize the design. An open head/neck coil was designed to operate in a clinical 2T MRI system and the presented results prove the efficacy of this design methodology.
Resumo:
The complex design and development of a planar multilayer phased array antenna in microstrip technology can be simplified using two commercially available design tools 1) Ansoft Ensemble and 2) HP-EEsof Touchstone. In the approach presented here, Touchstone is used to design RF switches and phase shifters whose scattering parameters are incorporated in Ensemble simulations using its black box tool. Using this approach, Ensemble is able to fully analyze the performance of radiating and beamforming layers of a phased array prior to its manufacturing. This strategy is demonstrated in a design example of a 12-element linearly-polarized circular phased array operating at L band. A comparison between theoretical and experimental results of the array is demonstrated.
Resumo:
The design and development of two X-band amplifying reflectarrays is presented. The arrays use dual-polarized aperture coupled patch antennas with FET transistors and phasing circuits to amplify a microwave signal and to radiate it in a chosen direction. Two cases are considered, one when a reflectarray converts a spherical wave due to a feed horn into a plane wave radiated into a boresight direction, and two, when the reflectarray converts a spherical wave due to a dual-polarized four-element feed array into a co-focal spherical wave. This amplified signal is received in an orthogonal port of the feed array so that the entire structure acts as a spatial power combiner. The two amplifying arrays are tested in the near-field zone for phase distribution over their apertures to achieve the required beam formation. Alternatively, their radiation patterns or gains are investigated.
Resumo:
Background. Nursing codes of ethics bind nurses to the role of patient advocate and compel them to take action when the rights or safety of a patient are jeopardized. Reporting misconduct is known as whistleblowing and studies indicate that there are personal and professional risks involved in blowing the whistle. Aim. The aim of this study was to explore the beliefs of nurses who wrestled with this ethical dilemma. Design. A descriptive survey design was used to examine the beliefs of nurses in Western Australia who reported misconduct (whistleblowers) and of those who did not report misconduct (nonwhistleblowers). Methods. The instrument listed statements from current ethical codes, statements from traditional views on nursing and statements of beliefs related to the participant's whistleblowing experience. Respondents were asked to rate each item on a five-point Likert format which ranged from strongly agree to strongly disagree. Data were analysed using a Pearson's correlation matrix and one-way ANOVA. To further explore the data, a factor analysis was run with varimax rotation. Results. Results indicated that whistleblowers supported the beliefs inherent in patient advocacy, while nonwhistleblowers retained a belief in the traditional role of nursing. Participants who reported misconduct (whistleblowers) supported the belief that nurses were primarily responsible to the patient and should protect a patient from incompetent or unethical people. Participants who did not report misconduct (nonwhistleblowers) supported the belief that nurses are obligated to follow a physician's order at all times and that nurses are equally responsible to the patient, the physician and the employer. Conclusion. These findings indicate that nurses may respond to ethical dilemmas based on different belief systems.
Resumo:
Design of liquid retaining structures involves many decisions to be made by the designer based on rules of thumb, heuristics, judgment, code of practice and previous experience. Various design parameters to be chosen include configuration, material, loading, etc. A novice engineer may face many difficulties in the design process. Recent developments in artificial intelligence and emerging field of knowledge-based system (KBS) have made widespread applications in different fields. However, no attempt has been made to apply this intelligent system to the design of liquid retaining structures. The objective of this study is, thus, to develop a KBS that has the ability to assist engineers in the preliminary design of liquid retaining structures. Moreover, it can provide expert advice to the user in selection of design criteria, design parameters and optimum configuration based on minimum cost. The development of a prototype KBS for the design of liquid retaining structures (LIQUID), using blackboard architecture with hybrid knowledge representation techniques including production rule system and object-oriented approach, is presented in this paper. An expert system shell, Visual Rule Studio, is employed to facilitate the development of this prototype system. (C) 2002 Elsevier Science Ltd. All rights reserved.