175 resultados para Distribution (economic theory)
Resumo:
A new approach based on the nonlocal density functional theory to determine pore size distribution (PSD) of activated carbons and energetic heterogeneity of the pore wall is proposed. The energetic heterogeneity is modeled with an energy distribution function (EDF), describing the distribution of solid-fluid potential well depth (this distribution is a Dirac delta function for an energetic homogeneous surface). The approach allows simultaneous determining of the PSD (assuming slit shape) and EDF from nitrogen or argon isotherms at their respective boiling points by using a set of local isotherms calculated for a range of pore widths and solid-fluid potential well depths. It is found that the structure of the pore wall surface significantly differs from that of graphitized carbon black. This could be attributed to defects in the crystalline structure of the surface, active oxide centers, finite size of the pore walls (in either wall thickness or pore length), and so forth. Those factors depend on the precursor and the process of carbonization and activation and hence provide a fingerprint for each adsorbent. The approach allows very accurate correlation of the experimental adsorption isotherm and leads to PSDs that are simpler and more realistic than those obtained with the original nonlocal density functional theory.
Resumo:
We construct a simple growth model where agents with uncertain survival choose schooling time, life-cycle consumption and the number of children. We show that rising longevity reduces fertility but raises saving, schooling time and the growth rate at a diminishing rate. Cross-section analyses using data from 76 countries support these propositions: life expectancy has a significant positive effect on the saving rate, secondary school enrollment and growth but a significant negative effect on fertility. Through sensitivity analyses, the effect on the saving rate is inconclusive, while the effects on the other variables are robust and consistent. These estimated effects are decreasing in life expectancy. Copyright The editors of the Scandinavian Journal of Economics 2005.
Resumo:
A new approach is developed to analyze the thermodynamic properties of a sub-critical fluid adsorbed in a slit pore of activated carbon. The approach is based on a representation that an adsorbed fluid forms an ordered structure close to a smoothed solid surface. This ordered structure is modelled as a collection of parallel molecular layers. Such a structure allows us to express the Helmholtz free energy of a molecular layer as the sum of the intrinsic Helmholtz free energy specific to that layer and the potential energy of interaction of that layer with all other layers and the solid surface. The intrinsic Helmholtz free energy of a molecular layer is a function (at given temperature) of its two-dimensional density and it can be readily obtained from bulk-phase properties, while the interlayer potential energy interaction is determined by using the 10-4 Lennard-Jones potential. The positions of all layers close to the graphite surface or in a slit pore are considered to correspond to the minimum of the potential energy of the system. This model has led to accurate predictions of nitrogen and argon adsorption on carbon black at their normal boiling points. In the case of adsorption in slit pores, local isotherms are determined from the minimization of the grand potential. The model provides a reasonable description of the 0-1 monolayer transition, phase transition and packing effect. The adsorption of nitrogen at 77.35 K and argon at 87.29 K on activated carbons is analyzed to illustrate the potential of this theory, and the derived pore-size distribution is compared favourably with that obtained by the Density Functional Theory (DFT). The model is less time-consuming than methods such as the DFT and Monte-Carlo simulation, and most importantly it can be readily extended to the adsorption of mixtures and capillary condensation phenomena.
Resumo:
The application of nonlocal density functional theory (NLDFT) to determine pore size distribution (PSD) of activated carbons using a nongraphitized carbon black, instead of graphitized thermal carbon black, as a reference system is explored. We show that in this case nitrogen and argon adsorption isotherms in activated carbons are precisely correlated by the theory, and such an excellent correlation would never be possible if the pore wall surface was assumed to be identical to that of graphitized carbon black. It suggests that pore wall surfaces of activated carbon are closer to that of amorphous solids because of defects of crystalline lattice, finite pore length, and the presence of active centers.. etc. Application of the NLDFT adapted to amorphous solids resulted in quantitative description of N-2 and Ar adsorption isotherms on nongraphitized carbon black BP280 at their respective boiling points. In the present paper we determined solid-fluid potentials from experimental adsorption isotherms on nongraphitized carbon black and subsequently used those potentials to model adsorption in slit pores and generate a corresponding set of local isotherms, which we used to determine the PSD functions of different activated carbons. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Objective: Childhood injury remains the single most important cause of mortality in children aged between 1-14 years in many countries. It has been proposed that lower socio-economic status (SES) and poorer housing contribute to potential hazards in the home environment. This study sought to establish whether the prevalence of observed hazards in and around the home was differentially distributed by SES, in order to identify opportunities for injury prevention. Methods: This study was a cross-sectional, random sample survey of primary school children from 32 schools in Brisbane. Interviews and house audits were conducted between July 2000 and April 2003 to collect information on SES (income, employment and education) and previously identified household hazards. Results: There was evidence of a relationship between prevalence of household environmental hazards and household SES; however, the magnitude and direction of this relationship appeared to be hazard-specific. Household income was related to play equipment characteristics, with higher SES groups being more likely to be exposed to risk. All three SES indicators were associated with differences in the home safety characteristics, with the lower SES groups more likely to be exposed to risk. Conclusion:The differential distribution of environmental risk factors by SES of household may help explain the SES differential in the burden of injury and provides opportunities for focusing efforts to address the problem.
Resumo:
Normal mixture models are being increasingly used to model the distributions of a wide variety of random phenomena and to cluster sets of continuous multivariate data. However, for a set of data containing a group or groups of observations with longer than normal tails or atypical observations, the use of normal components may unduly affect the fit of the mixture model. In this paper, we consider a more robust approach by modelling the data by a mixture of t distributions. The use of the ECM algorithm to fit this t mixture model is described and examples of its use are given in the context of clustering multivariate data in the presence of atypical observations in the form of background noise.
Resumo:
This paper combines insights from the literature on the economics of organisation with traditional models of market structure to construct a theory of equilibrium firm size heterogeneity under the assumption of a homogenous product industry. It is possible that configurations consisting entirely of small firms (run by entrepreneurs with limited attention) and with larger firms (using managerial techniques to substitute away these limits to allow increasing returns technologies to become profitable) can arise in equilibrium. However, there also exist equilibrium configurations with the co-existence of large and small firms. The efficiency properties of these respective equilibria are discussed. Finally, the implications of an expanding market size are considered.
Resumo:
Unauthorized accesses to digital contents are serious threats to international security and informatics. We propose an offline oblivious data distribution framework that preserves the sender's security and the receiver's privacy using tamper-proof smart cards. This framework provides persistent content protections from digital piracy and promises private content consumption.
Resumo:
Experimental data for E. coli debris size reduction during high-pressure homogenisation at 55 MPa are presented. A mathematical model based on grinding theory is developed to describe the data. The model is based on first-order breakage and compensation conditions. It does not require any assumption of a specified distribution for debris size and can be used given information on the initial size distribution of whole cells and the disruption efficiency during homogenisation. The number of homogeniser passes is incorporated into the model and used to describe the size reduction of non-induced stationary and induced E. coil cells during homogenisation. Regressing the results to the model equations gave an excellent fit to experimental data ( > 98.7% of variance explained for both fermentations), confirming the model's potential for predicting size reduction during high-pressure homogenisation. This study provides a means to optimise both homogenisation and disc-stack centrifugation conditions for recombinant product recovery. (C) 1997 Elsevier Science Ltd.
Resumo:
Overdose deaths are a manor contributor to excess mortality among heroin users. It has been proposed that opioid overdose morbidity and mortality could be reduced substantially by distributing the opioid antagonist naloxone to heroin users. The ethical issues raised by this proposal are evaluated from a utilitarian perspective. The potential advantages of naloxone distribution include the increased chance of comatose opioid users being quickly resuscitated by others present at the time of an overdose, naloxone's safety and its lack of abuse potential. The main problems raised by the proposal are: the medico-legal complications of medical practitioners prescribing a drug that is most likely to be administered to and by people other than the one for whom it is prescribed; the economic costs of distributing naloxone sufficiently widely to have an impact on overdose morbidity and mortality; and the potentially greater cost-effectiveness of simpler educational interventions. Given the possible benefits of naloxone distribution, it may be worthwhile considering a controlled trial of naloxone distribution to high-risk heroin users.