177 resultados para Crystal-structures
Resumo:
We report biogenic magnetite whiskers, with axial ratios of 6: 1, elongated in the [1 1 1]. [1 1 2] and [1 0 0] directions, resembling the magnetite whiskers detected in the Martian meteorite ALH84001 by Bradley ct nl., and interpreted by those authors as evidence of vapour-phase (abiogenic) growth. Magnetosomal whiskers with extended defects consistent with screw dislocations and magnetosomes resembling flattened twinned platelets, as well as other twinning phenomena and other structural defects, are also reported here. Magnetosomes with teardrop-shaped. cuboidal. irregular and jagged structures similar to those detected in ALH84001 by McKay et al.. coprecipitation of magnetite possibly with amorphous calcium carbonate, coprecipitation of magnetite possibly with amorphous silica, the incorporation of titanium in volutin inclusions and disoriented arrays of magnetosomes are also described. These observations demonstrate that the structures of the magnetite particles in ALH84001. their spatial arrange ment and coprecipitation with carbonates and proximity to silicates are consistent with being biogenic. Electron-beam-induced flash-melting of magnetosomes produced numerous screw dislocations in the (1 1 1). (1 0 0) and (1 1 0) lattice planes and induced fusion of platelets. From this, the lack of screw dislocations reported in the magnetite particles in ALH84001 (McKay et al.. and Bradley et al.) indicates that they have a low-temperature origin.
Resumo:
Leucine-rich repeats (LRRs) are 20-29-residue sequence motifs present in a number of proteins with diverse functions. The primary function of these motifs appears to be to provide a versatile structural framework for the formation of protein-protein interactions. The past two years have seen an explosion of new structural information on proteins with LRRs. The new structures represent different LRR subfamilies and proteins with diverse functions, including GTPase-activating protein rna 1 p from the ribonuclease-inhibitor-like subfamily; spliceosomal protein U2A', Rab geranylgeranyltransferase, internalin B, dynein light chain 1 and nuclear export protein TAP from the SDS22-like subfamily; Skp2 from the cysteine-containing subfamily; and YopM from the bacterial subfamily. The new structural information has increased our understanding of the structural determinants of LRR proteins and our ability to model such proteins with unknown structures, and has shed new light on how these proteins participate in protein-protein interactions.
Resumo:
The effects of thermodynamic non-ideality on the forms of sedimentation equilibrium distributions for several isoelectric proteins have been analysed on the statistical-mechanical basis of excluded volume to obtain an estimate of the extent of protein solvation. Values of the effective solvation. parameter delta are reported for ellipsoidal as well as spherical models of the proteins, taken to be rigid, impenetrable macromolecular structures. The dependence of the effective solvated radius upon protein molecular mass exhibits reasonable agreement with the relationship calculated for a model in which the unsolvated protein molecule is surrounded by a 0.52-nm solvation shell. Although the observation that this shell thickness corresponds to a double layer of water molecules may be of questionable relevance to mechanistic interpretation of protein hydration, it augurs well for the assignment of magnitudes to the second virial coefficients of putative complexes in the quantitative characterization of protein-protein interactions under conditions where effects of thermodynamic non-ideality cannot justifiably be neglected. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Recent advances in several experimental techniques have enabled detailed structural information to be obtained for floating (Langmuir) monolayers and Langmuir-Blodgett films. These techniques are described briefly and their application to the study of films of fatty acids and their salts is discussed. Floating monolayers on aqueous subphases have been shown to possess a complex polymorphism with phases whose structures may be compared to those of smectic mesophases. However, only those phases that exist at high surface pressures are normally used in Langmuir-Blodgett (LB) deposition. In single LB monolayers of fatty acids and fatty acid salts the acyl chains are in the all-cans conformation with their long axes normal to the substrate. The in-plane molecular packing is hexagonal with long-range bond orientational order and short-range positional order: known as the hexatic-B structure. This structure is found irrespective of the phase of the parent floating monolayer. The structures of multilayer LB films are similar to the structures of their bulk crystals, consisting of stacked bilayer lamellae. Each lamella is formed from two monolayers of fatty acid molecules or ions arranged head to head and held together by hydrogen bonding between pairs of acids or ionic bonding through the divalent cations. With acids the acyl chains are tilted with respect to the substrate normal and have a monoclinic structure, whereas the salts with divalent cations may have the chains normal to the substrate or tilted. The in-plane structures are usually centred rectangular with the chains in the trans conformation and packed in a herringbone pattern, Multilayer films of the acids show only a single-step order-disorder transition at the malting point, This temperature tends to rise as the number of layers increases. Complex changes occur when multilayer films of the salts are heated. Disorder of the chains begins at low temperatures but the arrangement of the head groups does not alter until the melting temperature is reached, Slow heating to a temperature just below the melting temperature gives, with some salts, a radical change in phase. The lamellar structure disappears and a new phase consisting of cylindrical rods lying parallel to the substrate surface and stacked in a hexagonal pattern is formed, In each rod the cations are aligned along the central axis surrounded by the disordered acyl chains. (C) 2001 Elsevier Science B,V. All rights reserved.
Resumo:
It has been argued that beyond software engineering and process engineering, ontological engineering is the third capability needed if successful e-commerce is to be realized. In our experience of building an ontological-based tendering system, we face the problem of building an ontology. In this paper, we demonstrate how to build ontologies in the tendering domain. The ontology life cycle is identified. Extracting concepts from existing resources like on-line catalogs is described. We have reused electronic data interchange (EDI) to build conceptual structures in the tendering domain. An algorithm to extract abstract ontological concepts from these structures is proposed.
Resumo:
The radiation chemistry of two TFE/PMVE copolymers with TFE mole fractions of 0.66 and 0.81 has been studied under vacuum using Co-60 gamma -radiation over absorbed dose ranges up to 4.2 MGy. The radiolysis temperature was 313 K for both TFE/PMVE copolymers. New structure formation in the copolymers was identified by solid-state F-19 NMR and the G-values for new chain ends of 2.1 and 0.5 and for branching sites of 0.9 and 0.2 have been obtained for the TFE/PMVE with TFE mole fractions of 0.66 and 0.81, respectively. The relative yields of-O-CF3 and -CF2-CF3 chain ends were found to be proportional to the copolymer composition, but the yields of the -CF2-CF3 chain ends and -CF- branch points mere not linearly related ia the composition. rather they wets correlated with the radical yields measured at 77 K. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Alpha-Conotoxins are small disulfide rich peptides from the venoms of marine cone snails. They target specific nicotinic acetylcholine receptor (nAChR) subtypes with high affinity and potency and are therefore valuable as neurophamacological probes and potential drug leads. This article gives a general overview of the chemical and biological features of alpha -conotoxins, including their pharmacology, binding interactions and structure. A detailed analysis of recently reported three-dimensional structures from members of different subfamilies of the alpha -conotoxins, including those with 3/5, 4/3, 4/6 and 4.7 spacings of their two intracysteine loops is given. The structures are generally well defined and represent useful frameworks for the display of amino acid residues to target molecules.
Resumo:
Composite clay nanostructures (CCNs) were observed in intercalating Laponite clay with alumina in the presence of alkyl polyether surfactants which contain hydrophobic alkyl chains and ether groups. Such nanostructured clays are highly porous solids consisting of randomly orientated clay platelets intercalated with alumina nanoparticles. The pores in the product solids are larger than the dimension of the surfactant molecules, ranging from 2 to 10 nm. This suggests that the micelles of the surfactant molecules, rather than the molecules, act as templates in the synthesis. Interestingly, it is found that the size of the framework pores was directly proportional to the amount of the surfactants in terms of moles, but shows no evident dependence on the size of the surfactant molecules. Broad pore size distributions were observed for the product CCNs. This study demonstrates that introducing surfactants in the pillaring process of clays is a powerful strategy for tailoring the pore structures of nanoporous clays. With this new technique, it is possible to design and engineer such composite clay nanostructures with desired pore and surface properties by the proper choice of surfactant amounts and preparation conditions.
Resumo:
Background: Adrenaline is localized to specific regions of the central nervous system (CNS), but its role therein is unclear because of a lack of suitable pharmacologic agents. Ideally, a chemical is required that crosses the blood-brain barrier, potently inhibits the adrenaline-synthesizing enzyme PNMT, and does not affect other catecholamine processes. Currently available PNMT inhibitors do not meet these criteria. We aim to produce potent, selective, and CNS-active PNMT inhibitors by structure-based design methods. The first step is the structure determination of PNMT. Results: We have solved the crystal structure of human PNMT complexed with a cofactor product and a submicromolar inhibitor at a resolution of 2.4 Angstrom. The structure reveals a highly decorated methyltransferase fold, with an active site protected from solvent by an extensive cover formed from several discrete structural motifs. The structure of PNMT shows that the inhibitor interacts with the enzyme in a different mode from the (modeled) substrate noradrenaline. Specifically, the position and orientation of the amines is not equivalent. Conclusions: An unexpected finding is that the structure of PNMT provides independent evidence of both backward evolution and fold recruitment in the evolution of a complex enzyme from a simple fold. The proposed evolutionary pathway implies that adrenaline, the product of PNMT catalysis, is a relative newcomer in the catecholamine family. The PNMT structure reported here enables the design of potent and selective inhibitors with which to characterize the role of adrenaline in the CNS. Such chemical probes could potentially be useful as novel therapeutics.
Resumo:
The three-dimensional structures of leucine-rich repeat (LRR) -containing proteins from five different families were previously predicted based on the crystal structure of the ribonuclease inhibitor. using an approach that combined homology-based modeling, structure-based sequence alignment of LRRs, and several rational assumptions. The structural models have been produced based on very limited sequence similarity, which, in general. cannot yield trustworthy predictions. Recently, the protein structures from three of these five families have been determined. In this report we estimate the quality of the modeling approach by comparing the models with the experimentally determined structures. The comparison suggests that the general architecture, curvature, interior/exterior orientations of side chains. and backbone conformation of the LRR structures can be predicted correctly. On the other hand. the analysis revealed that, in some cases. it is difficult to predict correctly the twist of the overall super-helical structure. Taking into consideration the conclusions from these comparisons, we identified a new family of bacterial LRR proteins and present its structural model. The reliability of the LRR protein modeling suggests that it would be informative to apply similar modeling approaches to other classes of solenoid proteins.