169 resultados para Acid Sites
Resumo:
Background: Asthma medication places patients at risk of dental erosion by reducing salivary protection against extrinsic or intrinsic acids. But patterns of lesions in asthmatics may differ from patterns in non-asthmatics, because gastro-oesophageal reflux (GOR) is found in 60 per cent of asthmatics. Methods: The lesions in 44 asthma cases were compared to those of age and sex match controls with no history of asthma or medications drawn from the dental records of 423 patients referred concerning excessive tooth wear. The subjects were 70 males age range 15 to 55 years and 18 females age range 18 to 45. Anamnestic clinical data were compared between the two groups. Models of all 88 subjects were examined by light microscopy, and wear patterns were recorded on permanent central incisor, canine, premolar and first molar teeth. Results: Clinical differences were a higher incidence of tooth hypersensitivity; xerostomia, salivary gland abnormalities, gastric complaints, and self induced vomiting in the cases. No differences were found between the cases and controls on citrus fruit and acid soft drink consumption. More occlusal erosion sites were found in cases, whereas more attrition sites were found in the controls. There were no significant differences in palatal erosion on maxillary anterior teeth found between cases and controls. Lingual erosion of the mandibular incisors, found only in GOR patients, was not observed. Conclusions: A higher incidence of erosion was found in asthmatics. Gastro-oesophageal reflux symptoms were not associated with the sign of lingual mandibular incisor erosion. The clinical significance is that asthmatics are at risk of dental erosion from extrinsic acid, but GOR does not appear to contribute in a site-specific manner.
Resumo:
It is predicted that dryland salinity will affect up to 17 Mha of the Australian landscape by 2050, and therefore, monitoring the health of tree plantings and remnant native vegetation in saline areas is increasingly important. Casuarina glauca Sieber ex Spreng. has considerable salinity tolerance and is commonly planted in areas with a shallow, saline water table. To evaluate the potential of using the nitrogenous composition of xylem sap to assess salinity stress in C. glauca, the responses of trees grown with various soil salinities in a greenhouse were compared with those of trees growing in field plots with different water table depths and groundwater salinities. In the greenhouse, increasing soil salinity led to increased allocation of nitrogen (N) to proline and arginine in both stem and root xylem sap, with coincident decreases in citrulline and asparagine. Although the field plots were ranked as increasingly saline-based on ground water salinity and depth-only the allocation of N to citrulline differed significantly between the field plots. Within each plot, temporal variation in the composition of the xylem sap was related to rainfall, rainfall infiltration and soil salinity. Periods of low rainfall and infiltration and higher soil salinity corresponded with increased allocation of N to proline and arginine in the xylem sap. The allocation of N to citrulline and asparagine increased following rainfall events where rain was calculated to have infiltrated sufficiently to decrease soil salinity. The relationship between nitrogenous composition of the xylem sap of C. glauca and soil salinity indicates that the analysis of xylem sap is an effective method for assessing changes in salinity stress in trees at a particular site over time. However, the composition of the xylem sap proved less useful as a comparative index of salinity stress in trees growing at different sites.
Resumo:
Acetohydroxyacid synthase (AHAS; EC 4.1.3.18) contains catalytic and regulatory subunits, the latter being required for sensitivity to feedback regulation by leucine, valine and isoleucine. The regulatory subunit of Arabidopsis thaliana AHAS possesses a sequence repeat and we have suggested preciously that one repeat binds leucine while the second binds valine or isoleucine, with synergy between the two sites. We have mutated four residues in each repeat, based on a model of the regulatory subunit. The data confirm that there are separate leucine and valine/isoleucine sites, and suggest a complex pathway for regulatory signal transmission to the catalytic subunit. (C) 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
Improvements to the routine methods for the determination of actual acidity in suspension for acid sulfate soils (ASS) are introduced. The titratable sulfidic acidity (TSA) results using an improved peroxide-based method were compared with the theoretical acidity predicted by the chromium reducible sulfur method for 9 acid sulfate soils. The regression between these 2 measures of sulfidic acidity was highly significant, the slope of the regression line not significantly different from unity (P = 0.05) and the intercept not significantly different from zero. This contrasts with results of other workers using earlier peroxide oxidation methods, where TSA substantially underestimated the theoretical acidity predicted by reduced inorganic sulfur analysis. Comparison was made between the 2 principal measurements from the improved peroxide method (TSA and S-POS), with S-POS converted to theoretical sulfidic acidity to allow comparison. The relationship between these 2 measurements was highly significant. The effects of titration in suspension, as well as raising titration end points to pH 6.5, were investigated, principally with respect to the titratable actual acidity (TAA) result. TAA results obtained by KCl extraction were compared with those obtained using BaCl2, MgCl2, and water extraction. TAA in 1 M KCl suspensions titrated to pH 6.5 agreed well with titratable actual acidity measured using the 25-h extraction approach of the Lin et al. (2000a) BaCl2 method. Both BaCl2 and KCl solutions were ineffective at fully recovering acidity from synthetic jarosite without repeated extraction and titration. The application of correction factors for the estimation of total actual acidity in ASS is not supported by the results of this investigation. Acid sulfate soils that contain substantial quantities of jarosite or other acid-producing but relatively insoluble sulfate minerals continue to prove problematic to chemically analyse; however, an approach for estimating this component is discussed.
Resumo:
Improvements to peroxide oxidation methods for analysing acid sulfate soils (ASS) are introduced. The soil solution ratio has been increased to 1 : 40, titrations are performed in suspension, and the duration of the peroxide digest stage is substantially shortened. For 9 acid sulfate soils, the peroxide oxidisable sulfur value obtained using the improved method was compared with the reduced inorganic sulfur result obtained using the chromium reducible sulfur method. Their regression was highly significant, the slope of the regression line was not significantly different (P = 0.05) from unity, and the intercept not significantly different from zero. A complete sulfur budget for the improved method showed there was no loss of sulfur as has been reported for earlier peroxide oxidation techniques. When soils were very finely ground, efficient oxidation of sulfides was achieved, despite the milder digestion conditions. Highly sulfidic and organic soils were shown to be the most difficult to analyse using either the improved method or the chromium method. No single analytical method can be universally applied to all ASS, rather a suite of methods is necessary for a thorough understanding of many ASS. The improved peroxide method, in combination with the chromium method and the 4 M HCl extraction, form a sound platform for informed decision making on the management of acid sulfate soils.
Resumo:
The cattle tick, Boophilus microplus, is a major pest of cattle in Australia, Central and South America, and parts of Africa and Asia. Control of ticks with organophosphates (OPs) and carbamates, which target acetylcholinesterases (AChE), led to evolution of resistance to these pesticides. Alleles at the locus studied here, AChE2, from OP-susceptible female ticks from Australia and Mexico differed at 46 of 1689 nucleotide positions (20 putative amino acid differences) whereas alleles from three strains of OP-resistant ticks from Australia differed with the allele from the Australian susceptible ticks at six to 13 nucleotide positions (three to six putative amino acid differences). However, the role, if any, of these polymorphisms in the OP-resistance phenotype is unknown. Certainly none of the polymorphisms correspond to sites in ACK that are involved in catalysis or binding of acetylcholine in other organisms. Both of the AChE loci of B. microplus, AChE1 and AChE2, are apparently expressed in synganglia; AChE1 is also expressed in salivary glands and ovaries, in OP-susceptible and OP-resistant ticks. This seems to contradict studies of enzyme kinetics, which indicated that only one form of AChE was present in the synganglia, the site of the action of OPs, in this species of tick. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Areas of the limbic system of adult male Wistar rats were screened for kainic-acid-induced gene expression. Polymerase-chain-reactionbased differential display identified a 147-bp cDNA fragment, which represented an mRNA that was upregulated in the entorhinal cortex and hippocampus in the kainic-acid-treated animals. The sequence was 97.8% homologous to rat 14-3-3 zeta isoform mRNA. Detailed Northern analysis revealed increased mRNA levels in the entorhinal cortex I h after kainic acid exposure and continued elevation 24 h post-injection in both the entorhinal cortex and hippocampus. Western blot analyses confirmed that the protein product of this gene was also present in increased amounts over the same time period. Immunohistochemistry and terminal transferase-mediated dUTP nick end labelling (TUNEL) detected expression of 14-3-3 protein exclusively in the entorhinal cortex and hippocampus, and only in TUNEL-positive neuronal cells. Expression of the tumor suppressor protein, p53 was also induced by kainate injection, and was co-localized with 14-3-3 zeta protein in selected cells only in the affected brain regions. The increase gene expression of 14-3-3 represents a transcription-mediated response associated with region selective neuronal damage induced by kainic acid. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Acyl glucuronides are reactive metabolites of carboxylate drugs, able to undergo a number of reactions in vitro and in vivo, including isomerization via intramolecular rearrangement and covalent adduct formation with proteins. The intrinsic reactivity of a particular acyl glucuronide depends upon the chemical makeup of the drug moiety. The least reactive acyl glucuronide yet reported is valproic acid acyl glucuronide (VPA-G), which is the major metabolite of the antiepileptic agent valproic acid (VPA). In this study, we showed that both VPA-G and its rearrangement isomers (iso-VPA-G) interacted with bovine brain microtubular protein (MTP, comprised of 85% tubulin and 15% microtubule associated proteins {MAPs}). MTP was incubated with VPA, VPA-G and iso-VPA-G for 2 h at room temperature and pH 7.5 at various concentrations up to 4 mM. VPA-G and iso-VPA-G caused dose-dependent inhibition of assembly of MTP into microtubules, with 50% inhibition (IC50) values of 1.0 and 0.2 mM respectively, suggesting that iso-VPA-G has five times more inhibitory potential than VPA-G. VPA itself did not inhibit microtubule formation except at very high concentrations (greater than or equal to2 mM). Dialysis to remove unbound VPA-G and iso-VPA-G (prior to the assembly assay) diminished inhibition while not removing it. Comparison of covalent binding of VPA-G and iso-VPA-G (using [C-14]-labelled species) showed that adduct formation was much greater for iso-vTA-G. When [C-14]-iso-VPA-G was reacted with MTP in the presence of sodium cyanide (to stabilize glycation adducts), subsequent separation into tubulin and MAPs fractions by ion exchange chromatography revealed that 78 and 22% of the covalent binding occurred with the MAPs and tubulin fractions respectively. These experiments support the notion of both covalent and reversible binding playing parts in the inhibition of microtubule formation from MTP (though the acyl glucuronide of VPA is less important than its rearrangement isomers in this regard), and that both tubulin and (perhaps more importantly) MAPs form adducts with acyl glucuronides. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
The 101 residue protein early pregnancy factor (EPF), also known as human chaperonin 10, was synthesized from four functionalized, but unprotected, peptide segments by a sequential thioether ligation strategy. The approach exploits the differential reactivity of a peptide-NHCH2CH2SH thiolate with XCH2CO-peptides, where X = Cl or I/Br. Initial model studies with short functionalized (but unprotected) peptides showed a significantly faster reaction of a peptide-NHCH2CH2SH thiolate with a BrCH2CO-peptide than with a CICH2CO-peptide, where thiolate displacement of the halide leads to chemoselective formation of a thioether surrogate for the Gly-Gly peptide bond. This rate difference was used as the basis of a novel sequential ligation approach to the synthesis of large polypeptide chains. Thus, ligation of a model bifunctional N-alpha-chloroacetyl, C-terminal thiolated peptide with a second N-alpha-bromoacetyl peptide demonstrated chemoselective bromide displacement by the thiol group. Further investigations showed that the relatively unreactive N-alpha-chloroacetyl peptides could be activated by halide exchange using saturated KI solutions to yield the highly reactive No-iodoacetyl peptides. These findings were used to formulate a sequential thioether ligation strategy for the synthesis of EPF, a 101 amino acid protein containing three Gly-Gly sites approximately equidistantly spaced within the peptide chain. Four peptide segments or cassettes comprising the EPF protein sequence (BrAc-[EPF 78-101] 12, ClAc-[EPF 58-75]-[NHCH2CH2SH] 13, ClAc-[EPF 30-55]-[NHCH2CH2SH] 14, and Ac-[EPF 1-27]-[NHCH2CH2SH] 15) of EPF were synthesized in high yield and purity using Boc SPPS chemistry. In the stepwise sequential ligation strategy, reaction of peptides 12 and 13 was followed by conversion of the N-terminal chloroacetyl functional group to an iodoacetyl, thus activating the product peptide for further ligation with peptide 14. The process of ligation followed by iodoacetyl activation was repeated to yield an analogue of EPF (EPF psi(CH2S)(28-29,56-57,76-77)) 19 in 19% overall yield.
Resumo:
Four emerging high-energy non-thermal technologies may replace or augment heating for producing sterile low-acid food products. High pressure, high-voltage pulsed electric field, high-energy ultrasound and high-intensity pulsed light are all capable of reducing bacterial spore counts under certain conditions. However, only non-continuous high pressure treatments, at temperatures higher than ambient, are currently capable of completely inactivating spores and producing sterile food products. The first three technologies also reduce the resistance of spores to inactivation by heat.
Resumo:
Aims : To study the effects of amylomaize starch and modified (carboxymethylated and acetylated) amylomaize starches on the composition of colonic bacteria and the production of volatile fatty acids, in mice. Methods and Results : Balb/c mice were fed with experimental diets containing various amount of amylomaize and modified amylomaize starches. Colonic bacterial populations and short-chain fatty acids were monitored. Results showed that the increases in indigenous bifidobacteria were detected in mice fed all starches tested; however, the highest numbers were observed in the group fed with 40% unmodified amylomaize starch. The starch type influenced the populations of indigenous Lactobacillus , Bacteroides and coliforms. High Lactobacillus numbers were achieved in the colon of mice fed with high concentration of amylomaize starch. Acetylated amylomaize starch significantly reduced the population of coliforms. In addition, orally dosed amylomaize utilizing bifidobacteria reached their highest levels when fed together with amylomaize or carboxymethylated amylomaize starch and in both cases butyrate levels were markedly increased. Conclusions: These results indicate that different amylomaize starches could generate desirable variation in gut microflora and that particular starches may be used to selectively modify gut function. Significance and Impact of Study: Amylomaize starch appeared to enhance the desirable composition of colonic bacteria in mice, and suggested it possessed the potential prebiotic properties.MTherefore, resistant starch and its chemical derivatives may exert beneficial impacts to the human colon.
Resumo:
Lipoamino acid-based synthetic peptides (lipid core peptides, LCP) derived from the type-specific and conserved region determinants of group A streptococci (GAS) were evaluated as potential candidate sequences in a vaccine to prevent GAS-associated diseases, including rheumatic heart, disease and poststreptococcal acute glomerulonephritis. The LCP peptides had significantly enhanced immunogenicity as compared with the monomeric peptide epitopes. Furthermore, the peptides incorporated into the LCP system generated epitope-specific antibodies without the use of any conventional adjuvant.
Resumo:
The alpha-conotoxin MII is a 16 amino acid long peptide toxin isolated from the marine snail, Conus magus. This toxin has been found to be a highly selective and potent inhibitor of neuronal nicotinic acetylcholine receptors of the subtype alpha3beta2. To improve the bioavailability of this peptide, we have coupled to the N-terminus of conotoxin MII, 2-amino-D,L-dodecanoic acid (Laa) creating a lipidic linear peptide which was then successfully oxidised to produce the correctly folded conotoxin MII construct.