208 resultados para Abnormal Subgroups
Resumo:
Neurological disease or dysfunction in newborn infants is often first manifested by seizures. Prolonged seizures can result in impaired neurodevelopment or even death. In adults, the clinical signs of seizures are well defined and easily recognized. In newborns, however, the clinical signs are subtle and may be absent or easily missed without constant close observation. This article describes the use of adaptive signal processing techniques for removing artifacts from newborn electroencephalogram (EEG) signals. Three adaptive algorithms have been designed in the context of EEG signals. This preprocessing is necessary before attempting a fine time-frequency analysis of EEG rhythmical activities, such as electrical seizures, corrupted by high amplitude signals. After an overview of newborn EEG signals, the authors describe the data acquisition set-up. They then introduce the basic physiological concepts related to normal and abnormal newborn EEGs and discuss the three adaptive algorithms for artifact removal. They also present time-frequency representations (TFRs) of seizure signals and discuss the estimation and modeling of the instantaneous frequency related to the main ridge of the TFR.
Resumo:
Hsp10 (10-kDa heat shock protein, also known as chaperonin 10 or Cpn10) is a co-chaperone for Hsp60 in the protein folding process. This protein has also been shown to be identical to the early pregnancy factor, which is an immunosuppressive growth factor found in maternal serum. In this study we have used immunogold electron microscopy to study the subcellular localization of Hsp10 in rat tissues sections embedded in LR Gold resin employing polyclonal antibodies raised against different regions of human Hsp10. In all rat tissues examined including liver, heart, pancreas, kidney, anterior pituitary, salivary gland, thyroid, and adrenal gland, antibodies to Hsp10 showed strong labeling of mitochondria. However, in a number of tissues, in addition to the mitochondrial labeling, strong and highly specific labeling with the Hsp10 antibodies was also observed in several extramitochondrial compartments. These sites included zymogen granules in pancreatic acinar cells, growth hormone granules in anterior pituitary, and secretory granules in PP pancreatic islet cells. Additionally, the mature red blood cells which lack mitochondria, also showed strong reactivity with the Hsp10 antibodies. The observed labeling with the Hsp10 antibodies, both within mitochondria as well as in other compartments/cells, was abolished upon omission of the primary antibodies or upon preadsorption of the primary antibodies with the purified recombinant human Hsp10. These results provide evidence that similar to a number of other recently described mitochondrial proteins (viz., Hsp60, tumor necrosis factor receptor-associated protein- 1, P32 (gC1q-R) protein, and cytochrome c), Hsp10 is also found at a variety of specific extramitochondrial sites in normal rat tissue. These results raise important questions as to how these mitochondrial proteins are translocated to other compartments and their possible function(s) at these sites. The presence of these proteins at extramitochondrial sites in normal tissues has important implications concerning the role of mitochondria in apoptosis and genetic diseases.
Resumo:
We report on a patient with a severe premature calvarial synostosis and epidermal hyperplasia. The phenotype was consistent with that of a mild presentation of Beare-Stevenson syndrome but molecular analysis of the IgIII-transmembrane linker region and the transmembrane domain of the gene encoding the FGFR2 receptor, revealed wild-type sequence only. Subsequently, molecular analysis of the FGFR3 receptor gene identified a heterozygous P250R missense mutation in both the proposita and her mildly affected father. This communication extends the clinical spectrum of the FGFR3 P250R mutation to encompass epidermal hyperplasia and documents the phenomenon of activated FGFR receptors stimulating common downstream developmental pathways, resulting in overlapping clinical outcomes. (C) 2001 Wiley-Liss, Inc.
Resumo:
Objective: To test the effect of liquid feeds on the responses to splanchnic ischaemia of a continuous rapid response PCO2 sensor inserted in the jejunum. Design: Prospective experimental animal study in a university research laboratory. Subjects: Adult male Wistar rats. Interventions: Adult male Wistar rats (285-425 g) were anaethetised with sodium pentobarbitone 60 mg/ kg i.p. and ventilated with 100 % oxygen and isoflurane via tracheostomy to a PaCO2 of 30-40 mmHg. A sensor was inserted into the mid-jejunum to record PCO2 every second. Distal aortic pressure was transduced. Four control rats received no feeds whilst in another four rats liquid feed was infused into the proximal jejunum at 3 ml/h. In each rat five episodes of splanchnic ischaemia were induced by 2-min elevations of an aortic sling to a mean distal aortic pressure of 30 mmHg. Measurements and main results: PCO2 elevations were always detectable, usually less than a minute from the onset of splanchnic ischaemia in both fed and unfed rats, with no difference in mean times to detectable response. In the fed rats there was a small but significant increase in the time to peak sensor response (196 +/- 16 vs. 180 +/- 12 s) and a trend towards an elevated mean baseline luminal PCO2 (67 +/- 9 vs. 55 +/- 4 mmHg). Conclusions: Brief episodes of splanchnic ischaemia were tracked successfully by a rapid response jejunal continuous PCO2 sensor during the infusion of a proprietary liquid feed preparation despite minor changes in PCO2 response characteristics and a possible elevation in baseline luminal PCO2.
Resumo:
We investigated whether red cell 2,3-diphosphoglycerate (2,3-DPG) concentrations are reduced in critical illness, whether acidaemia, hypophosphataemia or anaemia influence 2,3-DPG, and whether there is any net effect on in vivo P50. Twenty healthy, non-smoking, male volunteers were compared with 20 male intensive care patients with APACHE 2 scores > 20 on the preceding day. Those transfused in this time were excluded. Venous red cell 2,3-DPG concentrations were measured in both groups. In the patient group, routine multichannel biochemical profile and arterial blood gas analysis were also performed and in vivo P50 calculated. The mean 2,3-DPG concentration was significantly lower in the patient group than in the controls (4.2 +/-1.3 mmoll/l vs 4.9 +/-0.5 mmol/l, P=0.016). The patients were well oxygenated (lowest arterial PO2=75 mm Hg) and showed a tendency to acidaemia (median pH 7.37, range 7.06 to 7.48) and anaemia (median haemoglobin concentration 113 g/l, range 89 to 154 g/l). By linear regression of patient data, pH had a significant effect on 2,3-DPG concentrations (r=0.6, P=0.011). Haemoglobin and phosphate concentrations did not, but there were few abnormal phosphate values. There was no correlation between 2,3-DPG concentrations and in vivo P50 (r(2) less than or equal to 0.08). We conclude that 2,3-DPG concentrations were reduced in a broad group of critically ill patients. Although this would normally reduce the P50, the reduction was primarily linked with acidaemia, which increases the P50. Overall, there was no net effect on the P50 and thus no affinity-related decrease in tissue oxygenation.
Resumo:
Most mammalian cells have in their plasma membrane at least two types of lipid microdomains, non-invaginated lipid rafts and caveolae. Glycosylphosphatidylinositol (GPI)-anchored proteins constitute a class of proteins that are enriched in rafts but not caveolae at steady state. We have analyzed the effects of abolishing GPI biosynthesis on rafts, caveolae, and cholesterol levels. GPI-deficient cells were obtained by screening for resistance to the pore-forming toxin aerolysin, which uses this class of proteins as receptors. Despite the absence of GPI-anchored proteins, mutant cells still contained lipid rafts, indicating that GPI-anchored proteins are not crucial structural elements of these domains. Interestingly, the caveolae-specific membrane proteins, caveolin-1 and 2, were up-regulated in GPI-deficient cells, in contrast to flotillin-I and GM1, which were expressed at normal levels. Additionally, the number of surface caveolae was increased. This effect was specific since recovery of GPI biosynthesis by gene recomplementation restored caveolin expression and the number of surface caveolae to wild type levels. The inverse correlation between the expression of GPI-anchored proteins and caveolin-1 was confirmed by the observation that overexpression of caveolin-1 in wild type cells led to a decrease in the expression of GPI-anchored proteins. In cells lacking caveolae, the absence of GPI-anchored proteins caused an increase in cholesterol levels, suggesting a possible role of GPI-anchored proteins in cholesterol homeostasis, which in some cells, such as Chinese hamster ovary cells, can be compensated by caveolin up-regulation.
Resumo:
Specific point mutations in caveolin-3, a predominantly muscle-specific member of the caveolin family, have been implicated in limb-girdle muscular dystrophy and in rippling muscle disease. We examined the effect of these mutations on caveolin-3 localization and function. Using two independent assay systems, Raf activation in fibroblasts and neurite extension in PC12 cells, we show that one of the caveolin-3 point mutants, caveolin-3-C71W, specifically inhibits signaling by activated H-Ras but not by K-Ras. To gain insights into the effect of the mutant protein on H-Ras signaling, we examined the localization of the mutant proteins in fibroblastic cells and in differentiating myotubes. Unlike the previously characterized caveolin-3-DGV mutant, the inhibitory caveolin-3-C71W mutant reached the plasma membrane and colocalized with wild type caveolins. In BHK cells, caveolin-3-C71W associated with caveolae and in differentiating muscle cells with the developing T-tubule system. In contrast, the caveolin-3-P104L mutant accumulated in the Golgi complex and had no effect on H-Ras-mediated Raf activation. Inhibition by caveolin-3-C71W was rescued by cholesterol addition, suggesting that the mutant protein perturbs cholesterol-rich raft domains. Thus, we have demonstrated that a naturally occurring caveolin-3 mutation can inhibit signaling involving cholesterol-sensitive raft domains.
Resumo:
Purpose: To compare microsatellite instability (MSI) testing with immunohistochemical (IHC) detection of hMLH1 and hMSH2 in colorectal cancer. Patients and Methods: Colorectal cancers from 1, 144 patients were assessed for DNA mismatch repair deficiency by two methods: MSI testing and IHC detection of hMLH1 and hMSH2 gene products. High-frequency MSI (MSI-H) was defined as more than 30% instability of at least five markers; low-level MSI (MSI-L) was defined as 1% to 29% of loci unstable. Results: Of 1, 144 tumors tested, 818 showed intact expression of hMLH1 and hMSH2. Of these, 680 were microsatellite stable (MSS), 27 were MSI-H, and 111 were MSI-L. In all, 228 tumors showed absence of hMLH1 expression and 98 showed absence of hMSH2 expression: all were MSI-H. Conclusion: IHC in colorectal tumors for protein products hMLH1 and hMSH2 provides a rapid, cost-effective, sensitive (92.3%), and extremely specific (100%) method for screening for DNA mismatch repair defects. The predictive value of normal IHC for an MSS/MSI-L phenotype was 96.7%, and the predictive value of abnormal IHC was 100% for an MSI-H phenotype. Testing strategies must take into account acceptability of missing some cases of MSI-H tumors if only IHC is performed. (C) 2002 by American Society of Clinical Oncology.
Resumo:
Paget disease of bone (PDB) is characterized by increased osteoclast activity and localized abnormal bone remodeling. PDB has a significant genetic component, with evidence of linkage to chromosomes 6p21.3 (PDB1) and 18q21-22 (PDB2) in some pedigrees. There is evidence of genetic heterogeneity, with other pedigrees showing negative linkage to these regions. TNFRSF11A, a gene that is essential for osteoclast formation and that encodes receptor activator of nuclear factor-kappa B (RANK), has been mapped to the PDB2 region. TNFRSF11A mutations that segregate in pedigrees with either familial expansile osteolysis or familial PDB have been identified; however, linkage studies and mutation screening have excluded the involvement of RANK in the majority of patients with PDB. We have excluded linkage, both to PDB1 and to PDB2, in a large multigenerational pedigree with multiple family members affected by PDB. We have conducted a genomewide scan of this pedigree, followed by fine mapping and multipoint analysis in regions of interest. The peak two-point LOD scores from the genomewide scan were 2.75, at D7S507, and 1.76, at D18S70. Multipoint and haplotype analysis of markers flanking D7S507 did not support linkage to this region. Haplotype analysis of markers flanking D18S70 demonstrated a haplotype segregating with PDB in a large subpedigree. This subpedigree had a significantly lower age at diagnosis than the rest of the pedigree (51.2 +/- 8.5 vs. 64.2 +/- 9.7 years; P = .0012). Linkage analysis of this subpedigree demonstrated a peak two-point LOD score of 4.23, at marker D18S1390 (theta = 0), and a peak multipoint LOD score of 4.71, at marker D18S70. Our data are consistent with genetic heterogeneity within the pedigree and indicate that 18q23 harbors a novel susceptibility gene for PDB.
Resumo:
Four animal models were used to quantitatively evaluate hepatic alterations in this study: (1) a carbon tetrachloride control group (phenobarbital treatment only), (2) a CCl4-treated group (phenobarbital with CCl4 treatment), (3) an alcohol-treated group (liquid diet with alcohol treatment), and (4) a pair-fed alcohol control group (liquid diet only). At the end of induction, single-pass perfused livers were used to conduct multiple indicator dilution (MID) studies. Hepatic spaces (vascular space, extravascular albumin space, extravascular sucrose space, and cellular distribution volume) and water hepatocyte permeability/surface area product were estimated from nonlinear regression of outflow concentration versus time profile data. The hepatic extraction ratio of H-3-taurocholate was determined by the nonparametric moments method. Livers were then dissected for histopathologic analyses (e.g., fibrosis index, number of fenestrae). In these 4 models, CCl4-treated rats were found to have the smallest vascular space, extravascular albumin space, H-3-taurocholate extraction, and water hepatocyte permeability/surface area product but the largest extravascular sucrose space and cellular distribution volume. In addition, a linear relationship was found to exist between histopathologic analyses (fibrosis index or number of fenestrae) and hepatic spaces. The hepatic extraction ratio of H-3-taurocholate and water hepatocyte permeability/surface area product also correlated to the severity of fibrosis as defined by the fibrosis index. In conclusion, the multiple indicator dilution data obtained from the in situ perfused rat liver can be directly related to histopathologic analyses.
Resumo:
Fault detection and isolation (FDI) are important steps in the monitoring and supervision of industrial processes. Biological wastewater treatment (WWT) plants are difficult to model, and hence to monitor, because of the complexity of the biological reactions and because plant influent and disturbances are highly variable and/or unmeasured. Multivariate statistical models have been developed for a wide variety of situations over the past few decades, proving successful in many applications. In this paper we develop a new monitoring algorithm based on Principal Components Analysis (PCA). It can be seen equivalently as making Multiscale PCA (MSPCA) adaptive, or as a multiscale decomposition of adaptive PCA. Adaptive Multiscale PCA (AdMSPCA) exploits the changing multivariate relationships between variables at different time-scales. Adaptation of scale PCA models over time permits them to follow the evolution of the process, inputs or disturbances. Performance of AdMSPCA and adaptive PCA on a real WWT data set is compared and contrasted. The most significant difference observed was the ability of AdMSPCA to adapt to a much wider range of changes. This was mainly due to the flexibility afforded by allowing each scale model to adapt whenever it did not signal an abnormal event at that scale. Relative detection speeds were examined only summarily, but seemed to depend on the characteristics of the faults/disturbances. The results of the algorithms were similar for sudden changes, but AdMSPCA appeared more sensitive to slower changes.
Resumo:
This study was undertaken to establish whether children with myelomeningocele have abnormal kinaesthesia of the hands. Twenty-one children with myelomeningocele and 21 control children, aged between six and 12 years, were involved in the study. The level of kinaesthetic awareness in the hands was measured by examining the child's ability to copy hand positions, using visual cueing and kinaesthetic cueing. Both accuracy and speed of copying hand gestures were assessed. Children with spina bifida were significantly less accurate in achieving hand positions than the control group (chi((1))(2) 22.60, p < 0.001), with 73% of the children with spina bifida achieving accurate replications compared with 87% in the control group. Furthermore, children with myelomeningocele were shown to be slower than the controls (F-(1,F-2810) = 15.49, p < 0.001). The impaired kinaesthetic awareness found in this study is considered to be one of the factors behind the poor hand function observed in children with myelomeningocele.
Resumo:
Involvement of nerve tissue may contribute to the persistence of pain following a whiplash injury. This study aimed to investigate responses to the brachial plexus provocation test (BPPT) in 156 subjects with chronic whiplash associated disorder (WAD) with and without associated arm pain and 95 asymptomatic control subjects. The range of elbow extension (ROM) and visual analogue scale (VAS) pain scores were measured. Subjects with chronic WAD demonstrated significantly less ROM and higher VAS scores with the BPPT than the asymptomatic subjects (P