22 resultados para wallaby
Resumo:
We combine spatial data on home ranges of individuals and microsatellite markers to examine patterns of fine-scale spatial genetic structure and dispersal within a brush-tailed rock-wallaby (Petrogale penicillata) colony at Hurdle Creek Valley, Queensland. Brush-tailed rock-wallabies were once abundant and widespread throughout the rocky terrain of southeastern Australia; however, populations are nearly extinct in the south of their range and in decline elsewhere. We use pairwise relatedness measures and a recent multilocus spatial autocorrelation analysis to test the hypotheses that in this species, within-colony dispersal is male-biased and that female philopatry results in spatial clusters of related females within the colony. We provide clear evidence for strong female philopatry and male-biased dispersal within this rock-wallaby colony. There was a strong, significant negative correlation between pairwise relatedness and geographical distance of individual females along only 800 m of cliff line. Spatial genetic autocorrelation analyses showed significant positive correlation for females in close proximity to each other and revealed a genetic neighbourhood size of only 600 m for females. Our study is the first to report on the fine-scale spatial genetic structure within a rock-wallaby colony and we provide the first robust evidence for strong female philopatry and spatial clustering of related females within this taxon. We discuss the ecological and conservation implications of our findings for rock-wallabies, as well as the importance of fine-scale spatial genetic patterns in studies of dispersal behaviour.
Resumo:
Acrosomal development in the early spermatid of the rufous hare wallaby shows evidence of formation of an acrosomal granule, similar to that found in eutherian mammals, the Phascolarctidae and Vombatidae. Unlike the other members of the Macropodidae so far examined, the acrosome of this species appears to be fully compacted at spermiation and extends evenly over 90% of the dorsal aspect of the nucleus. During spermiogenesis, the nucleus of the rufous hare wallaby spermatid showed evidence of uneven condensation of chromatin; this may also be related to the appearance of unusual nucleoplasm evaginations from the surface of the fully condensed spermatid. This study was unable to find evidence of the presence of Sertoli cell spurs or nuclear rotation during spermiogenesis in the rufous hare wallaby. The majority of spermatozoa immediately before spermiation had a nucleus that was essentially perpendicular to the long axis of the sperm tail. Nuclei of spermatozoa found in the process of being released or isolated in the lumen of the seminiferous tubule were rotated almost parallel to the long axis of the flagellum; complete parallel alignment occurred during epididymal maturation. At spermiation spermatozoa have characteristically small cytoplasmic remnants compared to those of other macropods. Unlike the majority of macropodid spermatozoa so far described, the spermatozoa of the rufous hare wallaby showed little evidence of morphological change during epididymal transit. There was no formation of a fibre network around the midpiece or of plasma membrane specializations in this region; the only notable change was a distinctive flattening of midpiece mitochondria and scalloping of the anterior mitochondrial sheath to accommodate the sperm head. Preliminary evidence from spermiogenesis and epididymal sperm maturation supports the classification of the rufous hare wallaby as a separate genus but also indicates that its higher taxonomic position may need to be re-evaluated.
Resumo:
Eugenin [pGluGlnAspTyr(SO3)ValPheMetHisProPhe-NH2] has been isolated from the pouches of female Tammar wallabies (Macropus eugenii) carrying young in the early lactation period. The sequence of eugenin has been determined using a combination of positive and negative ion electrospray mass spectrometry. This compound bears some structural resemblance to the mammalian neuropeptide cholecystokinin 8 [AspTyr(SO3)MetGlyTrpMetAspPhe-NH2] and to the amphibian caerulein peptides [caerulein: pGluGlnAspTyr(SO3)ThrGlyTrpMetAspPhe-NH2]. Eugenin has been synthesized by a route which causes only minor hydrolysis of the sulfate group when the peptide is removed from the resin support. Biological activity tests with eugenin indicate that it contracts smooth muscle at a concentration of 10(-9) m, and enhances the proliferation of splenocytes at 10(-7) M, probably via activation of CCK2 receptors. The activity of eugenin on splenocytes suggests that it is an immunomodulator peptide which plays a role in the protection of pouch young.
Resumo:
Knowledge of factors affecting the survival of individuals and their reproductive success is essential for threatened species management, but studies assessing these factors are lacking for many threatened rock-wallaby species. In this study we investigated the factors influencing the breeding performance of females and the survival of pouch young in a wild colony of the threatened brush-tailed rock-wallaby. Individuals were trapped between October 2000 and April 2004. More than 50% of the females in the colony were breeding below their full potential and giving birth to only one offspring per year. Most females within the colony bred in synchrony, with a substantial birth peak evident during autumn. Pouch young born in autumn left the pouch during spring and were weaned during summer and autumn when forage was most abundant. Pouch young born during the autumn birth peak or in winter had a substantially higher probability of surviving through to pouch emergence than those born during spring or summer. This study provides demographic parameters that may be used in population models and for comparison with other populations, particularly those that are small and declining. To optimise reproductive success in reintroduction programs, females in good condition and with small pouch young should be released at the end of the wettest season.
Resumo:
Several behavioral studies of large, gregarious, and sexually dimorphic macropods have shown that males form dominance hierarchies and large males have the highest reproductive success. The bridled nailtail wallaby (Onychogalea fraenata) is a smaller and strongly sexually dimorphic macropod, but is also highly solitary and males do not form dominance hierarchies that are maintained temporally or spatially. Genetic studies of paternity have shown that large males are the most reproductively successful and only one-quarter of males sire offspring at any one time. The aim of this study was to investigate the tactics that males adopt to secure access to females at the time of estrus and to investigate whether females can influence which males have access to them. This study was conducted using 2 wild, free-ranging populations of bridled nailtail wallabies. Females in estrus were located and observed. and the total number of males present, the relative weight rank of each mate, and interactions between individuals were recorded. Females showed a preference for large males and incited male-male competition when the group of males present was large. Unlike other dimorphic macropods, fights among males were rare and were restricted to males of similar size. Large males gained access to females by guarding and following them closely and threatening other males who attempted to gain access. Smaller males spent less time with females, suggesting that small males may leave multimale groups in an attempt to locate unguarded females. Given the solitary nature of this species and the lack of a stable dominance hierarchy to influence male reproductive success. mate searching and mate guarding may be important male reproductive tactics in this species.
Resumo:
In the present paper, we have provided an initial assessment of the current and future threats to biodiversity posed by introduced mammals (predators and herbivores) inhabiting the Australian rangelands, exploring trends in populations and options for management. Notably, rabbits have declined in recent years in the wake of rabbit haemorrhagic disease, populations of feral camels have increased dramatically and foxes appear to have moved northwards, thereby threatening native fauna within an expanded range. Following on, we developed a framework for monitoring the impacts of introduced mammals in the Australian rangelands. In doing so, we considered the key issues that needed to be considered in designing a monitoring programme for this purpose and critically evaluated the role of monitoring in pest animal management. Finally we have provided a brief inventory of current best-practice methods of estimating the abundance of introduced mammal populations in the Australian rangelands with some comments on new approaches and their potential applications.
Resumo:
Phylogenetic studies of the genus Macropodinium were conducted using two methods; phenetics and cladistics. The phenetic study of morphometrics suggested that the genus could be divided into 3 groups attributable mostly to cell size and shape. The cladistic study also split the genus into 3 groups related to cell size but groups were further distinguished by patterns of ornamentation. Reconciliation of both approaches revealed considerable congruence, however, it also suggested the existence of convergences in the phenetic study and a lack of resolution in the cladistic study. The morphological diversity of Macropodinium is probably due to evolutionary trends such as increasing body size, allometry and polymerisation of structures. None of these trends, however, was uniformly directional and differential effects were observed in different regions of the phylogenetic tree. Comparison of the phylogeny of Macropodinium to a consensus phylogeny of the macropodids revealed limited incongruence between the 2 trees. The ciliate groups could be related to 2 host groups; the wallaby genera and the kangaroo and wallaroo subgenera. The association with these host groups may be the result of phyletic codescent, ecological resource tracking or a combination of both. Further studies of both host and ciliate phylogeny are necessary to resolve these effects.
Resumo:
Translocation is an important tool for the conservation of species that have suffered severe range reductions. The success of a translocation should be measured not only by the survival of released animals, but by the reproductive output of individuals and hence the establishment of a self-sustaining population. The bridled nailtail wallaby is an endangered Australian macropod that suffered an extensive range contraction to a single remaining wild population. A translocated population was established and subsequently monitored over a four year period. The aim of this study was to measure the reproductive success of released males using genetic tools and to determine the factors that predicted reproductive success. Captive-bred and wild-caught animals were released and we found significant variation in male reproductive success among release groups. Variation in reproductive success was best explained by individual male weight, survival and release location rather than origin. Only 26% of candidate males were observed to sire an offspring during the study. The bridled nailtail wallaby is a sexually dimorphic, polygynous macropod and reproductive success is skewed toward large males. Males over 5800 g were six times more likely to sire an offspring than males below this weight. This study highlights the importance of considering mating system when choosing animals for translocation. Translocation programs for polygynous species should release a greater proportion of females, and only release males of high breeding potential. By maximizing the reproductive output of released animals, conservation managers will reduce the costs of translocation and increase the chance of successfully establishing a self-sustaining population. (C) 2004 Elsevier Ltd. All rights reserved.