50 resultados para vitamin D
Resumo:
There is growing evidence that 1,25-dihydroxyvitamin D-3 is involved in normal brain development. The aim of this study was to examine the impact of prenatal and postnatal hypovitaminosis D on prepulse inhibition (PPI) of acoustic startle in adult rats. We compared six groups of rats: control rats with normal vitamin D throughout life and normal litter size (Litter); control rats with normal vitamin D but with a reduced litter size of two (Control); offspring from reduced litters of vitamin D deplete mothers who were repleted at birth (Birth), repleted at weaning (Weaning) or remained on a deplete diet until 10 weeks of age (Life); or control rats that were placed on a vitamin D-deficient diet from 5 to 10 weeks of age (Adult). All rats were tested in acoustic startle chambers at 5 and 10 weeks of age for acoustic startle responses and for PPI. There were no significant group differences at 5 weeks of age on the acoustic startle response or on PPI. At 10 weeks of age, rats in the Life group only had impaired PPI despite having normal acoustic startle responses. We conclude that combined prenatal and chronic postnatal hypovitaminosis D, but not early life hypovitaminosis D, alters PPI. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Rat experiments have shown that prenatal Vitamin D deficiency leads to altered neonatal brain morphology, cell density and neurotrophin expression. In the current study we examined the hypothesis that Vitamin D deficiency during early development alters adult behaviour even when there is an intervening period in which the animal receives normal Vitamin D in later development. Rats were conceived and born to Vitamin D deficient dams (Birth); conceived, born and weaned from Vitamin D deficient dams (Weaning); or deficient in Vitamin D from conception to 10 weeks of age (Life). Litters were standardized to three males and three females per litter. All rat offspring were rendered normocalcaemic with calcium supplemented water (2 mM) after weaning. Control animals were born to mothers fed a normal diet but subject to similar litter size and calcium supplementation. At 10 weeks all animals were tested on the holeboard test, elevated plus maze test, social interaction observation, acoustic startle response test, prepulse inhibition of the acoustic startle response and a forced swim test. Early Vitamin D deficiency (Birth group) enhanced locomotion in the holeboard test and increased activity in the elevated plus maze. Thus, transient prenatal Vitamin D deficiency induces hyperlocomotion in adulthood, without severe motor abnormalities. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Objective: Based on clues from epidemiology and animal experiments, low vitamin D during early life has been proposed as a risk factor for schizophrenia. The aim of this study was to explore the association between the use of vitamin D supplements during the first year of life and risk of developing schizophrenia. Method: Subjects were drawn from the Northern Finland 1966 Birth Cohort (n = 9 114). During the first year of life, data were collected about the frequency and dose of vitamin D supplementation. Our primary outcome measures were schizophrenia, psychotic disorders other than schizophrenia, and nonpsychotic disorders as diagnosed by age 31 years. Males and females were examined separately. Results: In males, the use of either irregular or regular vitamin D supplements was associated with a reduced risk of schizophrenia (Risk ratio (RR) = 0.08, 95% CI 0.01-0.95; RR = 0.12, 95% CI 0.02-0.90, respectively) compared with no supplementation. In males, the use of at least 2000 IU of vitamin D was associated with a reduced risk of schizophrenia (RR = 0.23, 95% CI 0.06-0.95) compared to those on lower doses. There were no significant associations between either the frequency or dose of vitamin D supplements and (a) schizophrenia in females, nor with (b) nonpsychotic disorder or psychotic disorders other than schizophrenia in either males or females. Conclusion: Vitamin D supplementation during the first year of life is associated with a reduced risk of schizophrenia in males. Preventing hypovitaminosis D during early life may reduce the incidence of schizophrenia. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Based on clues from epidemiology, low prenatal vitamin D has been proposed as a candidate risk factor for schizophrenia. Recent animal experiments have demonstrated that transient prenatal vitamin D deficiency is associated with persistent alterations in brain morphology and neurotrophin expression. In order to explore the utility of the vitamin D animal model of schizophrenia, we examined different types of learning and memory in adult rats exposed to transient prenatal vitamin D deficiency. Compared to control animals, the prenatally deplete animals had a significant impairment of latent inhibition, a feature often associated with schizophrenia. In addition, the deplete group was (a) significantly impaired on hole board habituation and (b) significantly better at maintaining previously learnt rules of brightness discrimination in a Y-chamber. In contrast, the prenatally deplete animals showed no impairment on the spatial learning task in the radial maze, nor on two-way active avoidance learning in the shuttle-box. The results indicate that transient prenatal vitamin D depletion in the rat is associated with subtle and discrete alterations in learning and memory. The behavioural phenotype associated with this animal model may provide insights into the neurobiological correlates of the cognitive impairments of schizophrenia. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
There is growing evidence that Vitamin D-3 (1,25-dihydroxyvitamin D-3) is involved in brain development. We have recently shown that the brains of newborn rats from Vitamin D-3 deficient dams were larger than controls, had increased cell proliferation, larger lateral ventricles, and reduced cortical thickness. Brains from these animals also had reduced expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor. The aim of the current study was to examine if there were any permanent outcomes into adulthood when the offspring of Vitamin D-3 deficient dams were restored to a normal diet. The brains of adult rats were examined at 10 weeks of age after Vitamin D-3 deficiency until birth or weaning. Compared to controls animals that were exposed to transient early Vitamin D-3 deficiency had larger lateral ventricles, reduced NGF protein content, and reduced expression of a number genes involved in neuronal structure, i.e. neurofilament or MAP-2 or neurotransmission, i.e. GABA-(alpha 4). We conclude that transient early life hypovitaminosis D-3 not only disrupts brain development but leads to persistent changes in the adult brain. In light of the high incidence of hypovitammosis D-3 in women of child-bearing age, the public health implications of these findings warrant attention. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Vitamin D (calcitriol) is a nuclear transcription regulator acting via a nuclear hormone receptor (VDR). In addition to its role in the regulation of calcium and phosphate horneostasis and in bone formation, Vitamin D is also thought to be involved in brain function. The aim of this study was to behaviourally phenotype VDR knockout mice. We characterized the behaviour of VDR null mutant mice and wildtype littermate controls by subjecting them to a range of tests including a primary behavioural screen (using the SHIRPA protocol), rotarod, gait analysis, Y-maze, marble burying test, bedding test, holeboard test, elevated plus maze, open field test and prepulse inhibition of the acoustic startle response. There were no effects of genotype on most of the scores from the SHIRPA protocol except that VDR -/- mice had alopecia, were shorter and weighed less than VDR +/+ mice. VDR -/- mice had a shorter gait as well as impairments on the rotarod, in the bedding test and impaired habituation in both the open field and on the acoustic startle response. The VDR -/- mice had normal acoustic startle responses but had impaired PPI at long (256 ms) but not short (64 ms) prepulse to pulse intervals. The VDR -/- mice were less active in the open field and buried fewer marbles in the marble burying test. However, there were no differences in the time spent on the open arms of the elevated plus maze or in working memory as assessed by repeat arm entries on the Y-maze. Therefore, it appears that VDR -/- mice have muscular and motor impairments that significantly affects locomotor behaviour but seemingly no impairments in cognition as indicated by exploration, working memory or anxiety. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The influence of a once only administration of a metabolite of vitamin D-3 (HY center dot D-(R)-25-hydroxy vitamin D-3) on myofibrillar meat tenderness in Australian Brahman cattle was studied. Ninety-six Brahman steers of three phenotypes (indo-Brazil, US and US/European) and with two previous hormonal growth promotant (HGP) histories (implanted or not implanted with Compudose((R))) were fed a standard feedlot ration for 70 d. Treatment groups of 24 steers were offered daily 10 g/head HY center dot D-(R) (125 mg 25-hydroxyvitamin D-3) for 6, 4, or 2 d before slaughter. One other group of 24 steers was given the basal diet without HY center dot D-(R). Feed lot performance, blood and muscle samples and carcass quality data were collected at slaughter. Calcium, magnesium, potassium, sodium, iron and Vitamin D-3 metabolites were measured in plasma and longissimus dorsi muscle. Warner-Bratzler (WB) shear force (peak force, initial yield) and other objective meat quality measurements were made on the longissimus dorsi muscle of each steer after ageing for 1, 7 and 14 d post-mortem at 0-2 degrees C. There were no significant effects of HY center dot D-(R) supplements on average daily gain (ADG, 1.28-1.45 kg/d) over the experimental period. HY center dot D-(R) supplements given 6 d prior to slaughter resulted in significantly higher (P < 0.05) initial yield values compared to supplements given 2 d prior to slaughter. Supplementation had no significant effect on meat colour, ultimate pH, sarcomere length, cooking loss, instron compression or peak force. There was a significant treatment (HY center dot D-(R)) by phenotype/HGP interaction for peak force (P = 0.028), in which Indo-Brazil steers without previous HGP treatment responded positively (increased tenderness) to HY center dot D-(R) supplements at 2 d when compared with Indo-Brazil steers previously given HGP. There were no significant effects of treatment on other phenotypes. HY center dot D-(R) supplements did not affect muscle or plasma concentrations of calcium, potassium or sodium, but did significantly decrease plasma magnesium and iron concentrations when given 2 d before slaughter. There were no detectable amounts of 25-hydroxyvitamin D-3 in the blood or muscle of any cattle at slaughter. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Although the key components of the cellular nuclear transport machinery have largely been characterized through extensive efforts in recent years, in vivo measurements of the kinetics of nuclear protein import/export are patently few. The present study applies the approach of FRAP (fluorescence recovery after photobleaching) to examine the nucleocytoplasmic flux of a novel human VDRB1 (vitamin D receptor B I) isoform in living cells. Through an N-terminal extension containing a consensus nuclear targeting sequence, VDRB1 is capable of localizing in nuclear speckles adjacent to SC-35 (35 kDa splicing component)containing speckles as well as in the nucleoplasm, dependent on ligand. Investigation of VDRB1 nucleocytoplasmic transport using FRAP indicates for the first time that the VDRB1 has a serum-modulated, active nuclear-import mechanism. There is no evidence of an efficient, active export mechanism for VDRB1, probably as a result of nuclear retention. VDRB1 nuclear import in the absence of serum occurred more rapidly and to a greater extent to nuclear speckles compared with import to other nuclear sites. This preferential transport from the cytoplasm to and accumulation within nuclear speckles is consistent with the idea that the latter represent dynamic centres of VDRB1 interaction with other nuclear proteins. The results are consistent with the existence of specialized pathways to target proteins to nuclear subdomains.
Resumo:
Context and Objective: Hip fracture is partially genetically determined. The present study was designed to examine the contributions of vitamin D receptor (VDR) and collagen I alpha 1 (COLIA1) genotypes to the liability to hip fracture in postmenopausal women. Design: The study was designed as a prospective population-based cohort investigation. Subjects: Six hundred seventy-seven postmenopausal women of Caucasian background, aged 70 +/- 7 yr (mean +/- SD), have been followed for up to 14 yr. Sixty-nine women had sustained a hip fracture during the period. Main Outcome: Atraumatic hip fractures were prospectively identified through radiologists' reports. Bone mineral density (BMD) at the hip and lumbar spine was measured by dual-energy x-ray absorptiometry. Genotypes: The TaqI and SpI COLIA1 polymorphisms of the VDR and COLIA1 genes were determined. Using the Single Nucleotide Polymorphism database, VDR TT, Tt, and tt genotypes were coded as TT, TC, and CC, whereas COLIA1 SS, Ss, and ss were coded as GG, GT, and TT. Results: Women with VDR CC genotype (16% prevalence) and COLIA1 TT genotype (5% prevalence) had an increased risk of hip fracture [odds ratio (OR) associated with CC, 2.6; 95% confidence interval (CI), 1.2-5.3; OR associated with TT, 3.8; 95% CI, 1.3-10.8] after adjustment for femoral neck BMD (OR, 3.4 per SD; 95% CI, 2.3-5.0) and age (OR, 1.4 per 5 yr; 95% CI, 1.1-1.7). Approximately 20 and 12% of the liability to hip fracture was attributable to the presence of the CC genotype and TT genotype, respectively. Conclusion: The VDR CC genotype and COLIA1 TT genotype were associated with increased hip fracture risk in Caucasian women, and this association was independent of BMD and age.
Resumo:
Developmental vitamin D deficiency (DVD) has been shown to alter the orderly pattern of brain development. Even though the period of vitamin D deficiency is restricted to gestation this is sufficient to induce behavioural abnormalities in the adult offspring consistent with those seen in many animal models of schizophrenia. Given that some of these behavioural alterations could also be an indirect result of either impaired maternal hypothalamic pituitary axis (HPA) function (which in turn could influence maternal care) or the result of a permanent alteration in HPA function in the adult offspring we have examined HPA status in both maternal animals and adult offspring. In this study we have established that HPA function is normal in the maternally vitamin D deficient rat. We replicate the behavioural phenotype of hyperlocomotion whilst establishing that HPA function is also unchanged in the adult mate offspring. We conclude that the behavioural alterations induced by DVD deficiency are due to some adverse event in brain development rather than via an alteration in stress response. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The association between vitamin D levels and skeletal growth has long been recognized. However, exposure to low levels of vitamin D during early life is also known to alter brain development, and is a candidate risk factor for schizophrenia. This study examines the association between four polymorphisms in the vitamin D receptor (VDR) and 1) risk of schizophrenia, and 2) three anthropometric variables (height, head size, and head shape). Four single-nucleotide polymorphisms (SNPs; rs10735810/FokI, rsl544410/BsmI, rs7975232/ApaI, and rs731236/TaqI) in the VDR gene were genotyped in 179 individuals with schizophrenia and 189 healthy controls. No significant associations were detected between any of the four VDR SNPs and risk of schizophrenia. Patients were slightly but significantly shorter compared to controls. Of the four SNPs, only rs10735810/FokI was associated with any of the anthropometric measures: the M4 isoform of this SNP was significantly associated with larger head size (P = 0.002). In light of the evidence demonstrating a role for vitamin D during brain development, the association between polymorphisms in VDR and brain development warrants closer scrutiny.