37 resultados para topological equivalence of attractors
Resumo:
Three apparently distinct and different approaches have been proposed to account for the crystallographic features of diffusion-controlled precipitation. These three models are based on (a) an invariant line in the habit plane, (b) the parallelism of a pair of Deltags that are perpendicular to the habit plane and (c) the parallelism of a pair of Moire fringes that are in turn parallel to the habit plane. The purpose of the present paper is to show that these approaches are in fact absolutely equivalent and that when certain conditions are satisfied they are essentially the same as the recent edge-to-edge matching model put forward by the authors. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The country-product-dummy (CPD) method, originally proposed in Summers (1973), has recently been revisited in its weighted formulation to handle a variety of data related situations (Rao and Timmer, 2000, 2003; Heravi et al., 2001; Rao, 2001; Aten and Menezes, 2002; Heston and Aten, 2002; Deaton et al., 2004). The CPD method is also increasingly being used in the context of hedonic modelling instead of its original purpose of filling holes in Summers (1973). However, the CPD method is seen, among practitioners, as a black box due to its regression formulation. The main objective of the paper is to establish equivalence of purchasing power parities and international prices derived from the application of the weighted-CPD method with those arising out of the Rao-system for multilateral comparisons. A major implication of this result is that the weighted-CPD method would then be a natural method of aggregation at all levels of aggregation within the context of international comparisons.
Resumo:
I argue that two competing accounts of persistence, three and four dimensionalism, are in fact metaphysically equivalent. I begin by clearly defining three and four dimensionalism, and then I show that the two theories are inter-translatable and equally simple. Through consideration of a number of different cases where intuitions about persistence are contradictory, I then go on to show that both theories describe these cases in the same manner. Further consideration of some empirical issues arising from the theory of special relativity lead me to conclude that the two theories are equally explanatory, and thus finally that they are metaphysically equivalent.
Resumo:
The similarity between the Peleg, Pilosof –Boquet–Batholomai and Singh–Kulshrestha models was investigated using the hydration behaviours of whey protein concentrate, wheat starch and whey protein isolate at 30 °C in 100% relative humidity. The three models were shown to be mathematically the same within experimental variations, and they yielded parameters that are related. The models, in their linear and original forms, were suitable (r2 > 0.98) in describing the sorption behaviours of the samples, and are sensitive to the length of the sorption segment used in the computation. The whey proteins absorbed more moisture than the wheat starch, and the isolate exhibited a higher sorptive ability than the concentrate.
Resumo:
MinE is an oligomeric protein that, in conjunction with other Min proteins, is required for the proper placement of the cell division site of Escherichia coli. We have examined the self-association properties of MinE by analytical ultracentrifugation and by studies of hetero-oligomer formation in non-denaturing polyacrylamide gets. The self-association properties of purified MinE predict that cytoplasmic MinE is likely to exist as a mixture of monomers and dimers. Consistent with this prediction, the C-terminal MinE(22-88) fragment forms hetero-oligomers with MinE(+) when the proteins are co-expressed. In contrast, the MinE(36-88) fragment does not form MinE(+)/MinE(36-88) hetero-oligomers, although MinE36-88 affects the topological specificity of septum placement as shown by its ability to induce minicell formation when co-expressed with MinE(+) in wild-type cells. Therefore, hetero-oligomer formation is not necessary for the induction of mini-celling by expression of MinE(36-88) in wild-type cells. The interference with normal septal placement is ascribed to competition between MinE(36-88),nd the corresponding domain in the complete MinE protein for a component required for the topological specificity of septal placement.
Resumo:
beta-turns are important topological motifs for biological recognition of proteins and peptides. Organic molecules that sample the side chain positions of beta-turns have shown broad binding capacity to multiple different receptors, for example benzodiazepines. beta-turns have traditionally been classified into various types based on the backbone dihedral angles (phi 2, psi 2, phi 3 and psi 3). Indeed, 57-68% of beta-turns are currently classified into 8 different backbone families (Type I, Type II, Type I', Type II', Type VIII, Type VIa1, Type VIa2 and Type VIb and Type IV which represents unclassified beta-turns). Although this classification of beta-turns has been useful, the resulting beta-turn types are not ideal for the design of beta-turn mimetics as they do not reflect topological features of the recognition elements, the side chains. To overcome this, we have extracted beta-turns from a data set of non-homologous and high-resolution protein crystal structures. The side chain positions, as defined by C-alpha-C-beta vectors, of these turns have been clustered using the kth nearest neighbor clustering and filtered nearest centroid sorting algorithms. Nine clusters were obtained that cluster 90% of the data, and the average intra-cluster RMSD of the four C-alpha-C-beta vectors is 0.36. The nine clusters therefore represent the topology of the side chain scaffold architecture of the vast majority of beta-turns. The mean structures of the nine clusters are useful for the development of beta-turn mimetics and as biological descriptors for focusing combinatorial chemistry towards biologically relevant topological space.
Resumo:
The development of Australian forms of the Childhood Asthma Questionnaires (CAQs) is reported. Focus group methods and psychometric analyses were used to establish the conceptual, semantic and technical equivalence of these forms with the UK versions. Both versions also provide for data collection from non-asthmatic youngsters. The internal consistency was found to be acceptable (Cronbach's alpha 0.52-0.90) and the health-related quality of life (HRQoL) scores were found to vary with asthma severity (p < 0.05). Comparison with the UK data revealed that the non-asthmatic scores were higher for Australian than British children (p < 0.001) but that the scores for children with asthma did not differ between the two countries. It was only In the Australian sample that the group with asthma reported impaired HRQoL when compared to their healthy peers. These findings were interpreted in the context of cultural expectations of life quality and conclusions are presented regarding the importance of the gap between experience and expectations. The difficulties raised by the developmental and cultural issues inherent in paediatric HRQoL research were discussed. Qual. Life Res. 7:409-419 (C) 1998 Kluwer Academic Publishers
Resumo:
We shall study continuous-time Markov chains on the nonnegative integers which are both irreducible and transient, and which exhibit discernible stationarity before drift to infinity sets in. We will show how this 'quasi' stationary behaviour can be modelled using a limiting conditional distribution: specifically, the limiting state probabilities conditional on not having left 0 for the last time. By way of a dual chain, obtained by killing the original process on last exit from 0, we invoke the theory of quasistationarity for absorbing Markov chains. We prove that the conditioned state probabilities of the original chain are equal to the state probabilities of its dual conditioned on non-absorption, thus allowing us to establish the simultaneous existence and then equivalence, of their limiting conditional distributions. Although a limiting conditional distribution for the dual chain is always a quasistationary distribution in the usual sense, a similar statement is not possible for the original chain.
Resumo:
This paper is devoted to the problems of finding the load flow feasibility, saddle node, and Hopf bifurcation boundaries in the space of power system parameters. The first part contains a review of the existing relevant approaches including not-so-well-known contributions from Russia. The second part presents a new robust method for finding the power system load flow feasibility boundary on the plane defined by any three vectors of dependent variables (nodal voltages), called the Delta plane. The method exploits some quadratic and linear properties of the load now equations and state matrices written in rectangular coordinates. An advantage of the method is that it does not require an iterative solution of nonlinear equations (except the eigenvalue problem). In addition to benefits for visualization, the method is a useful tool for topological studies of power system multiple solution structures and stability domains. Although the power system application is developed, the method can be equally efficient for any quadratic algebraic problem.
Resumo:
The skyrmions in SU(N) quantum Hall (QH) system are discussed. By analyzing the gauge field structure and the topological properties of this QH system it is pointed out that in the SU(N) QH system there can exist (N-1) types of skyrmion structures, instead of only one type of skyrmions. In this paper, by means of the Abelian projections according to the (N-1) Cartan subalgebra local bases, we obtain the (N-1) U(1) electromagnetic field tensors in the SU(N) gauge field of the QH system, and then derive (N-1) types of skyrmion structures from these U(1) sub-field tensors. Furthermore, in light of the phi-mapping topological current method, the topological charges and the motion of these skyrmions are also discussed.
Resumo:
Following the original analysis Of Zhang and Hu for the 4-dimensional generalization of Quantum Hall effect, there has been much work from different viewpoints on the higher dimensional condensed matter systems. In this paper, we discuss three kinds of topological excitations in the SO(4) gauge field of condensed matter systems in 4-dimension-the instantons and anti-instantons, the 't Hooft-Polyakov monopoles, and the 2-membranes. Using the phi-mapping topological theory, it is revealed that there are 4-, 3-, and 2-dimensional topological currents inhering in the SO (4) gauge field, and the above three kinds of excitations can be directly and explicitly derived from these three kinds of currents, respectively. Moreover, it is shown that the topological charges of these excitations are characterized by the Hopf indices and Brouwer degrees of phi-mapping. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Topological measures of large-scale complex networks are applied to a specific artificial regulatory network model created through a whole genome duplication and divergence mechanism. This class of networks share topological features with natural transcriptional regulatory networks. Specifically, these networks display scale-free and small-world topology and possess subgraph distributions similar to those of natural networks. Thus, the topologies inherent in natural networks may be in part due to their method of creation rather than being exclusively shaped by subsequent evolution under selection. The evolvability of the dynamics of these networks is also examined by evolving networks in simulation to obtain three simple types of output dynamics. The networks obtained from this process show a wide variety of topologies and numbers of genes indicating that it is relatively easy to evolve these classes of dynamics in this model. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Complex systems techniques provide a powerful tool to study the emergent properties of networks of interacting genes. In this study we extract models of genetic regulatory networks from an artificial genome, represented by a sequence of nucleotides, and analyse how variations in the connectivity and degree of inhibition of the extracted networks affects the resulting classes of behaviours. For low connectivity systems were found to be very stable. Only with higher connectivity was a significant occurrence of chaos found. Most interestingly, the peak in occurrence of chaos occurs perched on the edge of a phase transition in the occurrence of attractors.
Resumo:
The Drinfeld twist for the opposite quasi-Hopf algebra, H-COP, is determined and is shown to be related to the (second) Drinfeld twist on a quasi-Hopf algebra. The twisted form of the Drinfeld twist is investigated. In the quasi-triangular case, it is shown that the Drinfeld u-operator arises from the equivalence of H-COP to the quasi-Hopf algebra induced by twisting H with the R-matrix. The Altschuler-Coste u-operator arises in a similar way and is shown to be closely related to the Drinfeld u-operator. The quasi-cocycle condition is introduced and is shown to play a central role in the uniqueness of twisted structures on quasi-Hopf algebras. A generalization of the dynamical quantum Yang-Baxter equation, called the quasi-dynamical quantum Yang-Baxter equation, is introduced.
Resumo:
Complex numbers appear in the Hilbert space formulation of quantum mechanics, but not in the formulation in phase space. Quantum symmetries are described by complex, unitary or antiunitary operators defining ray representations in Hilbert space, whereas in phase space they are described by real, true representations. Equivalence of the formulations requires that the former representations can be obtained from the latter and vice versa. Examples are given. Equivalence of the two formulations also requires that complex superpositions of state vectors can be described in the phase space formulation, and it is shown that this leads to a nonlinear superposition principle for orthogonal, pure-state Wigner functions. It is concluded that the use of complex numbers in quantum mechanics can be regarded as a computational device to simplify calculations, as in all other applications of mathematics to physical phenomena.