36 resultados para thrombin inhibitor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most potent known naturally occurring Bowman-Birk inhibitor, sunflower trypsin inhibitor-1 (SFTI-1), is a bicyclic 14-amino acid peptide from sunflower seeds comprising one disulfide bond and a cyclic backbone. At present, little is known about the cyclization mechanism of SFTI-1. We show here that an acyclic permutant of SFTI-1 open at its scissile bond, SFTI-1[ 6,5], also functions as an inhibitor of trypsin and that it can be enzymatically backbone-cyclized by incubation with bovine beta-trypsin. The resulting ratio of cyclic SFTI-1 to SFTI1[6,5] is similar to9:1 regardless of whether trypsin is incubated with SFTI-1[ 6,5] or SFTI-1. Enzymatic resynthesis of the scissile bond to form cyclic SFTI-1 is a novel mechanism of cyclization of SFTI-1[ 6,5]. Such a reaction could potentially occur on a trypsin affinity column as used in the original isolation procedure of SFTI-1. We therefore extracted SFTI-1 from sunflower seeds without a trypsin purification step and confirmed that the backbone of SFTI-1 is indeed naturally cyclic. Structural studies on SFTI-1[ 6,5] revealed high heterogeneity, and multiple species of SFTI-1[ 6,5] were identified. The main species closely resembles the structure of cyclic SFTI-1 with the broken binding loop able to rotate between a cis/trans geometry of the I7-P8 bond with the cis conformer being similar to the canonical binding loop conformation. The non-reactive loop adopts a beta-hairpin structure as in cyclic wild-type SFTI-1. Another species exhibits an isoaspartate residue at position 14 and provides implications for possible in vivo cyclization mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficacy of 1-methylcyclopropene (1-MCP) gas to prevent the adverse effects of ethylene is limited by its short-term residual activity in some plants. Development of a simple 1-MCP sustained release device that prolongs 1-MCP exposure is reported herein. Sustained release devices comprised of polyvinylchloride tubes containing 0.1 g SmartFresh(TM) powder (a.i. 3.3% 1-MCP) and 1.25 ml deionised water were used to release 1-MCP into fibreboard cartons containing cut Geraldton waxflower (Chamelaucium uncinatum Schauer) cv. CWA Pink bunches during export shipment by air (107 h) from Australia to the UK. The devices protected flowers against abscission induced by subsequent test exposures to ethylene (1011,mul l(-1), 12 h, 20 degreesC) for 3-5 days after arrival. In contrast, pre-shipment treatments with either a single application of 790 nl l(-1) 1-MCP for 14 h at 2 degreesC or a 0.2 mM Ag+ (as silver thiosulphate; STS) pulse for 14 h at 2 degreesC protected flowers against exogenous ethylene for only 1-2 days of post-export life. However, pre-shipment 1-MCP fumigation was up to about three-fold more effective than either sustained 1-MCP release or pre-shipment STS treatments in reducing floral organ and leaf abscission from bunches during export. Thus, it is suggested that a combination of pre-shipment 1-MCP fumigation before export with sustained 1-MCP release during shipment should maximise efficacy against ethylene-induced waxflower flower abscission. (C) 2004 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of the temperature-dependence of thrombin-catalyzed cleavage of the Arg(155)-Ser(156) and Arg(284)-Thr(285) peptide bonds in prothrombin and prothrombin-derived substrates has yielded Arrhenius parameters that are far too large for classical mechanistic interpretation in terms of a simple hydrolytic reaction. Such a difference from the kinetic behavior exhibited in trypsin- and chymotrypsin-catalyzed proteolysis of peptide bonds is attributed to contributions by enzyme exosite interactions as well as enzyme conformational equilibria to the magnitudes of the experimentally determined Arrhenius parameters. Although the pre-exponential factor and the energy of activation deduced from the temperature-dependence of rate constants for proteolysis by thrombin cannot be accorded the usual mechanistic significance, their evaluation serves a valuable role by highlighting the existence of contributions other than those emanating from simple peptide hydrolysis to the kinetics of proteolysis by thrombin and presumably other enzymes of the blood coagulation system. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SFTI-1 is a bicyclic 14 amino acid peptide that was originally isolated from the seeds of the sunflower Helianthus annuus. It is a potent inhibitor of trypsin, with a sub-nanomolar K, value and is homologous to the active site region of the well-known family of serine protease inhibitors known as the Bowman-Birk trypsin inhibitors. It has a cyclic backbone that is cross-braced by a single disulfide bridge and a network of hydrogen bonds that result in a well-defined structure. SFTI-1 is amenable to chemical synthesis, allowing for the creation of synthetic variants. Alterations to the structure such as linearising the backbone or removing the disulfide bridge do not reduce the potency of SFTI-1 significantly, and minimising the peptide to as few as nine residues results in only a small decrease in reactivity. The creation of linear variants of SFTI-1 also provides a tool for investigating putative linear precursor peptides. The mechanism of biosynthesis of SFTI-1 is not yet known but it seems likely that it is a gene-coded product that has arisen from a precursor protein that may be evolutionarily related to classic Bowman-Birk inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Backbone-cyclized proteins are becoming increasingly well known, although the mechanism by which they are processed from linear precursors is poorly understood. In this report the sequence and structure of the linear precursor of a cyclic trypsin inhibitor, sunflower trypsin inhibitor 1 (SFTI-1) from sunflower seeds, is described. The structure indicates that the major elements of the reactive site loop of SFTI-1 are present before processing. This may have importance for a protease-mediated cyclizing reaction as the rigidity of SFTI-1 may drive the equilibrium of the reaction catalyzed by proteolytic enzymes toward the formation of a peptide bond rather than the normal cleavage reaction. The occurrence of residues in the SFTI-1 precursor susceptible to cleavage by asparaginyl proteases strengthens theories that involve this enzyme in the processing of SFTI-1 and further implicates it in the processing of another family of plant cyclic proteins, the cyclotides. The precursor reported here also indicates that despite strong active site sequence homology, SFTI-1 has no other similarities with the Bowman-Birk trypsin inhibitors, presenting interesting evolutionary questions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Latexin, the only known mammalian carboxypeptidase inhibitor, has no detectable sequence similarity with plant and parasite inhibitors, but it is related to a human putative tumor suppressor protein, TIG1. Latexin is expressed in the developing brain, and we find that it plays a role in inflammation, as it is expressed at high levels and is inducible in macrophages in concert with other protease inhibitors and potential protease targets. The crystal structure of mouse latexin, solved at 1.83 Angstrom resolution, shows no structural relationship with other carboxypeptidase inhibitors. Furthermore, despite a lack of detectable sequence duplication, the structure incorporates two topologically analogous domains related by pseudo two-fold symmetry. Surprisingly, these domains share a cystatin fold architecture found in proteins that inhibit cysteine proteases, suggesting an evolutionary and possibly functional relationship. The structure of the tumor suppressor protein TIG1 was modeled, revealing its putative membrane binding surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SFTI-1 is a novel 14 amino acid peptide comprised of a circular backbone constrained by three proline residues, a hydrogen-bond network, and a single disulfide bond. It is the smallest and most potent known Bowman-Birk trypsin inhibitor and the only one with a cyclic peptidic backbone. The solution structure of [ABA(3,11)]SFTI-1, a disulfide-deficient analogue of SFTI-1, has been determined by H-1 NMR spectroscopy. The lowest energy structures of native SFTI-1 and [ABA(3,11)]SFTI-1 are similar and superimpose with a root-mean-square deviation over the backbone and heavy atoms of 0.26 +/- 0.09 and 1.10 +/- 0.22 Angstrom, respectively. The disulfide bridge in SFTI-1 was found to be a minor determinant for the overall structure, but its removal resulted in a slightly weakened hydrogen-bonding network. To further investigate the role of the disulfide bridge, NMR chemical shifts for the backbone H-alpha protons of two disulfide-deficient linear analogues of SFTI-1, [ABA(3,11)]SFTI-1[6,5] and [ABA(3,11)]SFTI-1[1,14] were measured. These correspond to analogues of the cleavage product of SFTI-1 and a putative biosynthetic precursor, respectively. In contrast with the cyclic peptide, it was found that the disulfide bridge is essential for maintaining the structure of these open-chain analogues. Overall, the hydrogen-bond network appears to be a crucial determinant of the structure of SFTI-1 analogues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ketol-acid reductoisomerase (EC 1.1.1.86) catalyses the second reaction in the biosynthesis of the branched-chain amino acids. The reaction catalyzed consists of two stages, the first of which is an alkyl migration from one carbon atom to its neighbour. The likely transition state is therefore a cyclopropane derivative, and cyclopropane-1,1-dicarboxylate(CPD) has been reported to inhibit the Escherichia coli enzyme. In addition, this compound causes the accumulation of the substrate of ketol-acid reductoisomerase in plants. Here, we investigate the inhibition of the purified rice enzyme. The cDNA was cloned, and the recombinant protein was expressed in E. coli, purified and characterized kinetically. The purified enzyme is strongly inhibited by cyclopropane-1,1-dicarboxylate, with an inhibition constant of 90 nM. The inhibition is time-dependent and this is due to the low rate constants for formation (2.63 X 10(5) M-1 min(-1)) and dissociation (2.37 x 10(-2) min(-1)) of the enzyme-inhibitor complex. Other cyclopropane derivatives are much weaker inhibitors while dimethylmalonate is moderately effective. (c) 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphosulfomannan 1 (PI-88) is a mixture of highly sulfated oligosaccharides that is currently undergoing clinical evaluation in cancer patients. As well as it's anticancer properties, 1 displays a number of other interesting biological activities. A series of analogues of 1 were synthesized with a single carbon (pentasaccharide) backbone to facilitate structural characterization and interpretation of biological results. In a fashion similar to 1, all compounds were able to inhibit heparanase and to bind tightly to the proangiogenic growth factors FGF-1, FGF-2, and VEGF. The compounds also inhibited the infection of cells and cell-to-cell spread of herpes simplex virus (HSV-1). Preliminary pharmacokinetic data indicated that the compounds displayed different pharmacokinetic behavior compared with 1. Of particular note was the n-octyl derivative, which was cleared 3 times less rapidly than 1 and may provide increased systemic exposure.