127 resultados para photon echo
Resumo:
Left ventricular (LV) volumes have important prognostic implications in patients with chronic ischemic heart disease. We sought to examine the accuracy and reproducibility of real-time 3D echo (RT-3DE) compared to TI-201 single photon emission computed tomography (SPECT) and cardiac magnetic resonance imaging (MRI). Thirty (n = 30) patients (age 62±9 years, 23 men) with chronic ischemic heart disease underwent LV volume assessment with RT-3DE, SPECT, and MRI. Ano vel semi-automated border detection algorithmwas used by RT-3DE. End diastolic volumes (EDV) and end systolic volumes (ESV) measured by RT3DE and SPECT were compared to MRI as the standard of reference. RT-3DE and SPECT volumes showed excellent correlation with MRI (Table). Both RT- 3DE and SPECT underestimated LV volumes compared to MRI (ESV, SPECT 74±58 ml versus RT-3DE 95±48 ml versus MRI 96±54 ml); (EDV, SPECT 121±61 ml versus RT-3DE 169±61 ml versus MRI 179±56 ml). The degree of ESV underestimation with RT-3DE was not significant.
Resumo:
We propose a single optical photon source for quantum cryptography based on the acoustoelectric effect. Surface acoustic waves (SAWs) propagating through a quasi-one-dimensional channel have been shown to produce packets of electrons that reside in the SAW minima and travel at the velocity of sound. In our scheme, the electron packets are injected into a p-type region, resulting in photon emission. Since the number of electrons in each packet can be controlled down to a single electron, a stream of single- (or N-) photon states, with a creation time strongly correlated with the driving acoustic field, should be generated.
Resumo:
It has recently been stated that the parametrization of the time variables in the one-dimensional (I-D) mixing-frequency electron spin-echo envelope modulation (MIF-ESEEM) experiment is incorrect and hence the wrong frequencies for correlated nuclear transitions are predicted. This paper is a direct response to such a claim, its purpose being to show that the parametrization in land 2-D MIF-ESEEM experiments possesses the same form as that used in other 4-pulse incrementation schemes and predicts the same correlation frequencies. We show that the parametrization represents a shearing transformation of the 2-D time-domain and relate the resulting frequency domain spectrum to the HYSCORE spectrum in terms of a skew-projection. It is emphasized that the parametrization of the time-domain variables may be chosen arbitrarily and affects neither the computation of the correct nuclear frequencies nor the resulting resolution. The usefulness or otherwise of the MIF parameters \gamma\ > 1 is addressed, together with the validity of the original claims of the authors with respect to resolution enhancement in cases of purely homogeneous and inhomogeneous broadening. Numerical simulations are provided to illustrate the main points.
Resumo:
Objective-To compare the accuracy and feasibility of harmonic power Doppler and digitally subtracted colour coded grey scale imaging for the assessment of perfusion defect severity by single photon emission computed tomography (SPECT) in an unselected group of patients. Design-Cohort study. Setting-Regional cardiothoracic unit. Patients-49 patients (mean (SD) age 61 (11) years; 27 women, 22 men) with known or suspected coronary artery disease were studied with simultaneous myocardial contrast echo (MCE) and SPECT after standard dipyridamole stress. Main outcome measures-Regional myocardial perfusion by SPECT, performed with Tc-99m tetrafosmin, scored qualitatively and also quantitated as per cent maximum activity. Results-Normal perfusion was identified by SPECT in 225 of 270 segments (83%). Contrast echo images were interpretable in 92% of patients. The proportion of normal MCE by grey scale, subtracted, and power Doppler techniques were respectively 76%, 74%, and 88% (p < 0.05) at > 80% of maximum counts, compared with 65%, 69%, and 61% at < 60% of maximum counts. For each technique, specificity was lowest in the lateral wail, although power Doppler was the least affected. Grey scale and subtraction techniques were least accurate in the septal wall, but power Doppler showed particular problems in the apex. On a per patient analysis, the sensitivity was 67%, 75%, and 83% for detection of coronary artery disease using grey scale, colour coded, and power Doppler, respectively, with a significant difference between power Doppler and grey scale only (p < 0.05). Specificity was also the highest for power Doppler, at 55%, but not significantly different from subtracted colour coded images. Conclusions-Myocardial contrast echo using harmonic power Doppler has greater accuracy than with grey scale imaging and digital subtraction. However, power Doppler appears to be less sensitive for mild perfusion defects.
Resumo:
The production of conditional quantum states and quantum operations based on the result of measurement is now seen as a key tool in quantum information and metrology. We propose a different type of photon number detector. It functions nondeterministically, but when successful, it has high fidelity. The detector, which makes use of an n-photon auxiliary Fock state and high efficiency homodyne detection, allows a tunable trade-off between fidelity and probability. By sacrificing probability of operation, an excellent approximation to a photon-number detector is achieved.
Resumo:
We theoretically demonstrate a method for producing the maximally path-entangled state (1/root2)(\N,0>+exp[iNphi]\0,N>) using intensity-symmetric multiport beam splitters, single photon inputs, and either photon-counting postselection or conditional measurement. The use of postselection enables successful implementation with non-unit efficiency detectors. We also demonstrate how to make the same state more conveniently by replacing one of the single photon inputs by a coherent state.
Resumo:
A semiconductor based scheme has been proposed for generating entangled photon pairs from the radiative decay of an electrically pumped biexciton in a quantum dot. Symmetric dots produce polarization entanglement, but experimentally realized asymmetric dots produce photons entangled in both polarization and frequency. In this work, we investigate the possibility of erasing the “which-path” information contained in the frequencies of the photons produced by asymmetric quantum dots to recover polarization-entangled photons. We consider a biexciton with nondegenerate intermediate excitonic states in a leaky optical cavity with pairs of degenerate cavity modes close to the nondegenerate exciton transition frequencies. An open quantum system approach is used to compute the polarization entanglement of the two-photon state after it escapes from the cavity, measured by the visibility of two-photon interference fringes. We explicitly relate the two-photon visibility to the degree of the Bell-inequality violation, deriving a threshold at which Bell-inequality violations will be observed. Our results show that an ideal cavity will produce maximally polarization-entangled photon pairs, and even a nonideal cavity will produce partially entangled photon pairs capable of violating a Bell-inequality.
Resumo:
OBJECTIVES We sought to determine whether the transmural extent of scar (TES) explains discordances between dobutamine echocardiography (DbE) and thallium single-photon emission computed tomography (Tl-SPECT) in the detection of viable myocardium (VM). BACKGROUND Discrepancies between DbE and Tl-SPECT are often attributed to differences between contractile reserve and membrane integrity, but may also reflect a disproportionate influence of nontransmural scar on thickening at DbE. METHODS Sixty patients (age 62 +/- 12 years; 10 women and 50 men) with postinfarction left ventricular dysfunction underwent standard rest-late redistribution Tl-SPECT and DbE. Viable myocardium was identified when dysfunctional segments showed Tl activity >60% on the late-redistribution image or by low-dose augmentation at DbE. Contrast-enhanced magnetic resonance imaging (ceMRI) was used to divide TES into five groups: 0%, 75% of the wall thickness replaced by scar. RESULTS As TES increased, both the mean Tl uptake and change in wall motion score decreased significantly (both p < 0.001). However, the presence of subendocardial scar was insufficient to prevent thickening; >50% of segments still showed contractile function with TES of 25% to 75%, although residual function was uncommon with TES >75%. The relationship of both tests to increasing TES was similar, but Tl-SPECT identified VM more frequently than DbE in all groups. Among segments without scar or with small amounts of scar (50% were viable by SPECT. CONCLUSIONS Both contractile reserve and perfusion are sensitive to the extent of scar. However, contractile reserve may be impaired in the face of no or minor scar, and thickening may still occur with extensive scar. (C) 2004 by the American College of Cardiology Foundation.
Resumo:
It is shown that a linear superposition of two macroscopically distinguishable optical coherent states can be generated using a single photon source and simple all-optical operations. Weak squeezing on a single photon, beam mixing with an auxiliary coherent state, and photon detecting with imperfect threshold detectors are enough to generate a coherent state superposition in a free propagating optical field with a large coherent amplitude (alpha>2) and high fidelity (F>0.99). In contrast to all previous schemes to generate such a state, our scheme does not need photon number resolving measurements nor Kerr-type nonlinear interactions. Furthermore, it is robust to detection inefficiency and exhibits some resilience to photon production inefficiency.
Resumo:
A system of two two-level atoms interacting with a squeezed vacuum field can exhibit stationary entanglement associated with nonclassical two-photon correlations characteristic of the squeezed vacuum field. The amount of entanglement present in the system is quantified by the well known measure of entanglement called concurrence. We find analytical formulae describing the concurrence for two identical and nonidentical atoms and show that it is possible to obtain a large degree of steady-state entanglement in the system. Necessary conditions for the entanglement are nonclassical two-photon correlations and nonzero collective decay. It is shown that nonidentical atoms are a better source of stationary entanglement than identical atoms. We discuss the optimal physical conditions for creating entanglement in the system; in particular, it is shown that there is an optimal and rather small value of the mean photon number required for creating entanglement.
Resumo:
We experimentally determine weak values for a single photon's polarization, obtained via a weak measurement that employs a two-photon entangling operation, and postselection. The weak values cannot be explained by a semiclassical wave theory, due to the two-photon entanglement. We observe the variation in the size of the weak value with measurement strength, obtaining an average measurement of the S-1 Stokes parameter more than an order of magnitude outside of the operator's spectrum for the smallest measurement strengths.
Resumo:
We develop an all-optical scheme to generate superpositions of macroscopically distinguishable coherent states in traveling optical fields. It nondeterministically distills coherent-state superpositions (CSS's) with large amplitudes out of CSS's with small amplitudes using inefficient photon detection. The small CSS's required to produce CSS's with larger amplitudes are extremely well approximated by squeezed single photons. We discuss some remarkable features of this scheme: it effectively purifies mixed initial states emitted from inefficient single-photon sources and boosts negativity of Wigner functions of quantum states.
Resumo:
We investigate the nonclassicality of a photon-subtracted Gaussian field, which was produced in a recent experiment, using negativity of the Wigner function and the nonexistence of well-behaved positive P function. We obtain the condition to see negativity of the Wigner function for the case including the mixed Gaussian incoming field, the threshold photodetection and the inefficient homodyne measurement. We show how similar the photon-subtracted state is to a superposition of coherent states.