16 resultados para philosophical logic
Resumo:
In this paper we follow the BOID (Belief, Obligation, Intention, Desire) architecture to describe agents and agent types in Defeasible Logic. We argue, in particular, that the introduction of obligations can provide a new reading of the concepts of intention and intentionality. Then we examine the notion of social agent (i.e., an agent where obligations prevail over intentions) and discuss some computational and philosophical issues related to it. We show that the notion of social agent either requires more complex computations or has some philosophical drawbacks.
Resumo:
Cox's theorem states that, under certain assumptions, any measure of belief is isomorphic to a probability measure. This theorem, although intended as a justification of the subjectivist interpretation of probability theory, is sometimes presented as an argument for more controversial theses. Of particular interest is the thesis that the only coherent means of representing uncertainty is via the probability calculus. In this paper I examine the logical assumptions of Cox's theorem and I show how these impinge on the philosophical conclusions thought to be supported by the theorem. I show that the more controversial thesis is not supported by Cox's theorem. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
This paper reports on a system for automated agent negotiation, based on a formal and executable approach to capture the behavior of parties involved in a negotiation. It uses the JADE agent framework, and its major distinctive feature is the use of declarative negotiation strategies. The negotiation strategies are expressed in a declarative rules language, defeasible logic, and are applied using the implemented system DR-DEVICE. The key ideas and the overall system architecture are described, and a particular negotiation case is presented in detail.
Resumo:
While some recent frameworks on cognitive agents addressed the combination of mental attitudes with deontic concepts, they commonly ignore the representation of time. An exception is [1]that manages also some temporal aspects both with respect to cognition and normative provisions. We propose in this paper an extension of the logic presented in [1]with temporal intervals.
Resumo:
The theory of Owicki and Gries has been used as a platform for safety-based verifcation and derivation of concurrent programs. It has also been integrated with the progress logic of UNITY which has allowed newer techniques of progress-based verifcation and derivation to be developed. However, a theoretical basis for the integrated theory has thus far been missing. In this paper, we provide a theoretical background for the logic of Owicki and Gries integrated with the logic of progress from UNITY. An operational semantics for the new framework is provided which is used to prove soundness of the progress logic.
Resumo:
We explore of the feasibility of the computationally oriented institutional agency framework proposed by Governatori and Rotolo testing it against an industrial strength scenario. In particular we show how to encode in defeasible logic the dispute resolution policy described in Article 67 of FIDIC.
Resumo:
This article extends Defeasible Logic to deal with the contextual deliberation process of cognitive agents. First, we introduce meta-rules to reason with rules. Meta-rules are rules that have as a consequent rules for motivational components, such as obligations, intentions and desires. In other words, they include nested rules. Second, we introduce explicit preferences among rules. They deal with complex structures where nested rules can be involved.
Resumo:
In the Leaven of the Ancients, John Walbridge studies the appropriation of non–Peripatetic philosophical ideas by an anti–Aristotelian Islamic philosopher, Shihab al-Din al-Suhrawardi (d. 1191). He proposes a comprehensive explanation of the origin of Suhrawardi's philosophical system, a revival of the “wisdom of the Ancients” and its philosophical affiliations “grounded” in Greek philosophy (p. xiii). Walbridge attempts to uncover the reasons for Suhrawardi's rejection of the prevailing neo–Aristotelian synthesis in Islamic philosophy, Suhrawardi's knowledge and understanding of non–Aristotelian Greek philosophy, the ancient philosophers Suhrawardi was attempting to follow, the relationship between Suhrawardi's specific philosophical teachings (logic, ontology, physics, and metaphysics), and his understanding of non–Aristotelian ancient philosophy and the relationship between Suhrawardi's system and the major Greek philosophers, schools, and traditions—in particular the Presocratics, Plato, and the Stoics (p. 8). Copyright © 2003 Cambridge University Press
Resumo:
The refinement calculus provides a framework for the stepwise development of imperative programs from specifications. In this paper we study a refinement calculus for deriving logic programs. Dealing with logic programs rather than imperative programs has the dual advantages that, due to the expressive power of logic programs, the final program is closer to the original specification, and each refinement step can achieve more. Together these reduce the overall number of derivation steps. We present a logic programming language extended with specification constructs (including general predicates, assertions, and types and invariants) to form a wide-spectrum language. General predicates allow non-executable properties to be included in specifications. Assertions, types and invariants make assumptions about the intended inputs of a procedure explicit, and can be used during refinement to optimize the constructed logic program. We provide a semantics for the extended logic programming language and derive a set of refinement laws. Finally we apply these to an example derivation.
Resumo:
In this paper we demonstrate a refinement calculus for logic programs, which is a framework for developing logic programs from specifications. The paper is written in a tutorial-style, using a running example to illustrate how the refinement calculus is used to develop logic programs. The paper also presents an overview of some of the advanced features of the calculus, including the introduction of higher-order procedures and the refinement of abstract data types.
Resumo:
Existing refinement calculi provide frameworks for the stepwise development of imperative programs from specifications. This paper presents a refinement calculus for deriving logic programs. The calculus contains a wide-spectrum logic programming language, including executable constructs such as sequential conjunction, disjunction, and existential quantification, as well as specification constructs such as general predicates, assumptions and universal quantification. A declarative semantics is defined for this wide-spectrum language based on executions. Executions are partial functions from states to states, where a state is represented as a set of bindings. The semantics is used to define the meaning of programs and specifications, including parameters and recursion. To complete the calculus, a notion of correctness-preserving refinement over programs in the wide-spectrum language is defined and refinement laws for developing programs are introduced. The refinement calculus is illustrated using example derivations and prototype tool support is discussed.