23 resultados para paramagnetic
Resumo:
Anisotropic magnetic susceptibility tensors chi of paramagnetic metal ions are manifested in pseudocontact shifts, residual dipolar couplings, and other paramagnetic observables that present valuable long-range information for structure determinations of protein-ligand complexes. A program was developed for automatic determination of the chi-tensor anisotropy parameters and amide resonance assignments in proteins labeled with paramagnetic metal ions. The program requires knowledge of the three-dimensional structure of the protein, the backbone resonance assignments of the diamagnetic protein, and a pair of 2D N-15-HSQC or 3D HNCO spectra recorded with and without paramagnetic metal ion. It allows the determination of reliable chi-tensor anisotropy parameters from 2D spectra of uniformly N-15-labeled proteins of fairly high molecular weight. Examples are shown for the 185-residue N-terminal domain of the subunit epsilon from E. coli DNA polymerase III in complex with the subunit theta and La3+ in its diamagnetic and Dy3+, Tb3+, and Er3+ in its paramagnetic form.
Resumo:
The XSophe computer simulation software suite consisting of a daemon, the XSophe interface and the computational program Sophe is a state of the art package for the simulation of electron paramagnetic resonance spectra. The Sophe program performs the computer simulation and includes a number of new technologies including; the SOPHE partition and interpolation schemes, a field segmentation algorithm, homotopy, parallelisation and spectral optimisation. The SOPHE partition and interpolation scheme along with a field segmentation algorithm greatly increases the speed of simulations for most systems. Multidimensional homotopy provides an efficient method for accurately tracing energy levels and hence tracing transitions in the presence of energy level anticrossings and looping transitions and allowing computer simulations in frequency space. Recent enhancements to Sophe include the generalised treatment of distributions of orientational parameters, termed the mosaic misorientation linewidth model and a faster more efficient algorithm for the calculation of resonant field positions and transition probabilities. For complex systems the parallelisation enables the simulation of these systems on a parallel computer and the optimisation algorithms in the suite provide the experimentalist with the possibility of finding the spin Hamiltonian parameters in a systematic manner rather than a trial-and-error process. The XSophe software suite has been used to simulate multifrequency EPR spectra (200 MHz to 6 00 GHz) from isolated spin systems (S > ~½) and coupled centres (Si, Sj _> I/2). Griffin, M.; Muys, A.; Noble, C.; Wang, D.; Eldershaw, C.; Gates, K.E.; Burrage, K.; Hanson, G.R."XSophe, a Computer Simulation Software Suite for the Analysis of Electron Paramagnetic Resonance Spectra", 1999, Mol. Phys. Rep., 26, 60-84.
Resumo:
We propose a simple picture for the occurrence of superconductivity and the pressure dependence of the superconducting critical temperature, T-SC, in ZrZn2. According to our hypothesis the pairing potential is independent of pressure, but the exchange splitting, E-xc leads to a pressure dependence in the (spin dependent) density of states at the Fermi level, D-sigma (epsilon(F)). Assuming p-wave pairing T-SC is dependent on D-sigma (epsilonF) which ensures that, in the absence of non-magnetic impurities, T-SC decreases as pressure is applied until it reaches a minimum in the paramagnetic state. Disorder reduces this minimum to zero, this gives the illusion that the superconductivity disappears at the same pressure as ferromagnetism does.
Resumo:
Metal ion binding properties of the immunosuppressant drug cyclosporin A have been investigated. Complexation studies in acetonitrile solution using H-1 NMR and CD spectroscopy yielded 1:1 metal-peptide binding constants (log(10)K) for potassium(l), < 1, magnesium(II), 4.8 +/- 0.2. and calcium(II), 5.0 +/- 1.0. The interaction of copper(II) with cyclosporin A in methanol was investigated with UV/visible and electron paramagnetic resonance (EPR) spectroscopy. No complexation of copper(II) was observed in neutral solution. In the presence of base, monomeric copper(II) complexes were detected. These results support the possibility that cyclosporin A has ionophoric properties for biologically important essential metal ions. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
The three-dimensional branched nature of dendritic macromolecules provides many potential sites per molecule for the complexation of metal ions. Therefore, dendrimers may act as hosts for metals with coordination potentially occurring at the periphery, the interior, or both. To understand further the complexation of dendrimers with metal ions EXAFS experiments were carried out. In this work, the interaction of amine-terminated polyamido(amine), PAMAM, dendrimer with copper(II) ions determined by EXAFS is reported. It was found that a model consisting of the copper(II) ion forming five- and six-membered rings by chelating with the primary amine, amide, and tertiary amine nitrogen donors of the PAMAM dendrimer could describe the experimental EXAFS data well. Corroborative evidence for binding to amide nitrogen donors comes from the broadening of NMR resonances of a copper(Il)-PAMAM mixture revealing the presence of paramagnetic copper(II) ions at these sites. The significance of the results presented in this paper is that copper(II) ions form complexes within the dendrimer structure and not just at the periphery. The current study may have implications for the use of PAMAM dendrimers as effective ligands in sensing systems.
Resumo:
Patellamide D (patH(4)) is a cyclic octapeptide isolated from the ascidian Lissoclinum patella. The peptide possesses a 24-azacrown-8 macrocyclic structure containing two oxazoline and two thiazole rings, each separated by an amino acid. The present spectrophotometric, electron paramagnetic resonance (EPR) and mass spectral studies show that patellamide D reacts with CuCl, and triethylamine in acetonitrile to form mononuclear and binuclear copper(II) complexes containing chloride. Molecular modelling and EPR studies suggest that the chloride anion bridges the copper(II) ions in the binuclear complex [Cu-2(patH(2))(mu-Cl)](+). These results contrast with a previous study employing both base and methanol, the latter substituting for chloride in the copper(II) complexes en route to the stable mu-carbonato binuclear copper(II) complex [Cu-2 (patH(2))(mu-CO3)]. Solvent clearly plays an important role in both stabilising these metal ion complexes and influencing their chemical reactivities. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Pure limestones beneath the paleosols on San Salvador Island, Bahamas, contain strong positive magnetic susceptibility anomalies, although the iron content is generally very low. These magnetic phenomena differ from those associated with disconformities, which are marked by accumulation of paramagnetic airborne dust deposits with relatively high iron content. The strength and characters of the magnetic response in these subsurface zones correspond to the presence of magnetite, particularly small single-domain magnetite crystals of microbial origin. These crystals are not present elsewhere in the intergranular rock pores or microvugs. They are preferentially concentrated in capillary microborings, which developed concurrently with formation of calcite cements that have soil-related C and O isotope compositions. These magnetic zones occur several meters below the overlying soil horizons. Very thin and long linear microborings may be attributable to cyanobacterial microborers. The single-domain magnetites in these micrometer-size tunnels plugged by calcite appear to result from later occupation of these tiny holes by magnetotactic bacteria. Inorganic origin of the magnetite seems unlikely. Numerous traces that suggest subsurface microbial activity provide evidence that may be used to develop possible scenarios for subsequent biological studies of the precise bacteria involved.
Resumo:
The basis for the neuroprotectant effect of D-mannitol in reducing the sensory neurological disturbances seen in ciguatera poisoning, is unclear. Pacific ciguatoxin-1 (P-CTX-1), at a concentration 10 nM, caused a statistically significant swelling of rat sensory dorsal root ganglia (DRG) neurons that was reversed by hyperosmolar 50 MM D-mannitol. However, using electron paramagnetic resonance (EPR) spectroscopy, it was found that P-CTX-1 failed to generate hydroxyl free radicals at concentrations of toxin that caused profound effects on neuronal excitability. Whole-cell patch-clamp recordings from DRG neurons revealed that both hyper- and iso-osmolar 50 MM D-mannitol prevented the membrane depolarisation and repetitive firing of action potentials induced by P-CTX-1. In addition, both hyper- and iso-osmolar 50 MM D-mannitol prevented the hyperpolarising shift in steady-state inactivation and the rise in leakage current through tetrodotoxin (TTX)-sensitive Na-v channels, as well as the increased rate of recovery from inactivation of TTX-resistant Nav channels induced by P-CTX-1. D-Mannitol also reduced, but did not prevent, the inhibition of peak TTX-sensitive and TTX-resistant I-Na amplitude by P-CTX-1. Additional experiments using hyper- and isoosmolar D-sorbitol, hyperosmolar sucrose and the free radical scavenging agents Trolox (R) and L-ascorbic acid showed that these agents, unlike D-mannitol, failed to prevent the effects of P-CTX-1 on spike electrogenesis and Na-v channel gating. These selective actions of D-mannitol indicate that it does not act purely as an osmotic agent to reduce swelling of nerves, but involves a more complex action dependent on the Nav channel subtype, possibly to alter or reduce toxin association. (c) 2005 Elsevier Ltd. All rights reserved.