16 resultados para optical coherence tomography
Resumo:
Optical coherence tomography (OCT) is an emerging coherence-domain technique capable of in vivo imaging of sub-surface structures at millimeter-scale depth. Its steady progress over the last decade has been galvanized by a breakthrough detection concept, termed spectral-domain OCT, which has resulted in a dramatic improvement of the OCT signal-to-noise ratio of 150 times demonstrated for weakly scattering objects at video-frame-rates. As we have realized, however, an important OCT sub-system remains sub-optimal: the sample arm traditionally operates serially, i.e. in flying-spot mode. To realize the full-field image acquisition, a Fourier holography system illuminated with a swept-source is employed instead of a Michelson interferometer commonly used in OCT. The proposed technique, termed Fourier-domain OCT, offers a new leap in signal-to-noise ratio improvement, as compared to flying-spot OCT systems, and represents the main thrust of this paper. Fourier-domain OCT is described, and its basic theoretical aspects, including the reconstruction algorithm, are discussed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Full-field Fourier-domain optical coherence tomography (3F-OCT) is a full-field version of spectral domain/swept source optical coherence tomography. A set of two-dimensional Fourier holograms is recorded at discrete wavenumbers spanning the swept source tuning range. The resultant three-dimensional data cube contains comprehensive information on the three-dimensional spatial properties of the sample, including its morphological layout and optical scatter. The morphological layout can be reconstructed in software via three-dimensional discrete Fourier transformation. The spatial resolution of the 3F-OCT reconstructed image, however, is degraded due to the presence of a phase cross-term, whose origin and effects are addressed in this paper. We present a theoretical and experimental study of the imaging performance of 3F-OCT, with particular emphasis on elimination of the deleterious effects of the phase cross-term.
Resumo:
We report a new approach in optical coherence tomography (OCT) called full-field Fourier-domain OCT (3F-OCT). A three-dimensional image of a sample is obtained by digital reconstruction of a three-dimensional data cube, acquired with a Fourier holography recording system, illuminated with a swept source. We present a theoretical and experimental study of the signal-to-noise ratio of the 3F-OCT approach versus serial image acquisition (flying-spot OCT) approach. (c) 2005 Optical Society of America.
Resumo:
Full-field Fourier-domain optical coherence tomography (3F-OCT) is a full-field version of spectraldomain/swept-source optical coherence tomography. A set of two-dimensional Fourier holograms is recorded at discrete wavenumbers spanning the swept-source tuning range. The resultant three-dimensional data cube contains comprehensive information on the three-dimensional morphological layout of the sample that can be reconstructed in software via three-dimensional discrete Fourier-transform. This method of recording of the OCT signal confers signal-to-noise ratio improvement in comparison with "flying-spot" time-domain OCT. The spatial resolution of the 3F-OCT reconstructed image, however, is degraded due to the presence of a phase cross-term, whose origin and effects are addressed in this paper. We present theoretical and experimental study of imaging performance of 3F-OCT, with particular emphasis on elimination of the deleterious effects of the phase cross-term.
Resumo:
Choroidal osteoma is a rare, benign, ossifying tumour of the choroid of unknown aetiology. In contrast to other types of intraocular ossification, choroidal osteoma is found typically in young healthy females in the second or third decades of life with no history of systemic or ocular disease. Choroidal osteoma is a deep, pale yellow lesion with distinct geographic borders at the juxtapapillary or macular region, with branching 'spider' vessels on the surface of the tumour. These features should help differentiate choroidal osteoma from other types of intraocular tumour and the diagnosis can be confirmed with ultrasonography and computerised tomography. Here we report an initially unilateral case of choroidal osteoma, which decalcified over 20 years but during the same period the fellow eye also developed a choroidal osteoma to become a bilateral case. Despite the benign nature of the tumour, vision may be compromised by gradual atrophy of the overlying retina, serous retinal detachment, accumulation of sub-retinal fluid and sub-retinal haemorrhage associated with choroidal neovascularisation. Frequent examinations are recommended for patients with choroidal osteoma, for early detection of a subretinal neovascular membrane and potential treatment with laser photocoagulation.
Resumo:
For many strongly correlated metals with layered crystal structure the temperature dependence of the interlayer resistance is different to that of the intralayer resistance. We consider a small polaron model which exhibits this behavior, illustrating how the interlayer transport is related to the coherence of quasiparticles within the layers. Explicit results are also given for the electron spectral function, interlayer optical conductivity, and the interlayer magnetoresistance. All these quantities have two contributions: one coherent (dominant at low temperatures) and the other incoherent (dominant at high temperatures).
Resumo:
Pulsed coherent excitation of a two-level atom strongly coupled to a resonant cavity mode will create a superposition of two coherent states of opposite amplitudes in the field. By choosing proper parameters of interaction time and pulse shape the field after the pulse will be almost disentangled from the atom and can be efficiently outcoupled through cavity decay. The fidelity of the generation approaches unity if the atom-field coupling strength is much larger than the atomic and cavity decay rates. This implies a strong difference between even and odd output photon number counts. Alternatively, the coherence of the two generated field components can be proven by phase-dependent annihilation of the generated nonclassical superposition state by a second pulse.
Resumo:
We investigate the emission of multimodal polarized light from light emitting devices due to spin-aligned carrier injection. The results are derived through operator Langevin equations, which include thermal and carrier-injection fluctuations, as well as nonradiative recombination and electronic g-factor temperature dependence. We study the dynamics of the optoelectronic processes and show how the temperature-dependent g factor and magnetic field affect the degree of polarization of the emitted light. In addition, at high temperatures, thermal fluctuation reduces the efficiency of the optoelectronic detection method for measuring the degree of spin polarization of carrier injection into nonmagnetic semicondutors.
Resumo:
Layered systems show anisotropic transport properties. The interlayer conductivity shows a general temperature dependence for a wide class of materials. This can be understood if conduction occurs in two different channels activated at different temperatures. We show that the characteristic temperature dependence can be explained using a polaron model for the transport. The results show an intuitive interpretation in terms of coherent and incoherent quasi-particles within the layers. Further, we extract results for the magnetoresistance, thermopower, spectral function and optical conductivity for the model and discuss application to experiments.
Resumo:
We show that two evanescently coupled χ((2)) parametric down-converters inside a Fabry-Perot cavity provide a tunable source of quadrature squeezed light, Einstein-Podolsky-Rosen (EPR) correlations and quantum entanglement. Analyzing the operation in the below threshold regime, we show how these properties can be controlled by adjusting the coupling strengths and the cavity detunings. As this can be implemented with integrated optics, it provides a possible route to rugged and stable EPR sources.
Resumo:
The relationship between the production of dimethylsulfide (DMS) in the upper ocean and atmospheric sulfate aerosols has been confirmed through local shipboard measurements, and global modeling studies alike. In order to examine whether such a connection may be recoverable in the satellite record, we have analyzed the correlation between mean surface chlorophyll (CHL) and aerosol optical depth (AOD) in the Southern Ocean, where the marine atmosphere is relatively remote from anthropogenic and continental influences. We carried out the analysis in 5-degree zonal bands between 50 degrees S and 70 degrees S, for the period ( 1997 - 2004), and in smaller meridional sectors in the Eastern Antarctic, Ross and Weddell seas. Seasonality is moderate to strong in both CHL and AOD signatures throughout the study regions. Coherence in the CHL and AOD time series is strong in the band between 50 degrees S and 60 degrees S, however this synchrony is absent in the sea-ice zone (SIZ) south of 60 degrees S. Marked interannual variability in CHL occurs south of 60 degrees S, presumably related to variability in sea-ice production during the previous winter. We find a clear latitudinal difference in the cross correlation between CHL and AOD, with the AOD peak preceding the CHL bloom by up to 6 weeks in the SIZ. This suggests that substantial trace gas emissions ( aerosol precursors) are being produced over the SIZ in spring ( October - December) as sea ice melts. This hypothesis is supported by field data that record extremely high levels of sulfur species in sea ice, surface seawater, and the overlying atmosphere during ice melt.
Resumo:
We demonstrate a new architecture for an optical entangling gate that is significantly simpler than previous realizations, using partially polarizing beam splitters so that only a single optical mode-matching condition is required. We demonstrate operation of a controlled-z gate in both continuous-wave and pulsed regimes of operation, fully characterizing it in each case using quantum process tomography. We also demonstrate a fully resolving, nondeterministic optical Bell-state analyzer based on this controlled-z gate. This new architecture is ideally suited to guided optics implementations of optical gates.