38 resultados para human immunodeficiency virus-infected individuals
Resumo:
We assessed the association between the causative agents of vaginal discharge and pelvic inflammatory disease (PID) among women attending a rural sexually transmitted disease clinic in South Africa; the role played by coinfection with human immunodeficiency virus type 1 (HIV-1) was studied. Vaginal and cervical specimens were obtained to detect Neisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis, and bacterial vaginosis. HIV-1 infection was established by use of serum antibody tests. A total of 696 women with vaginal discharge were recruited, 119 of whom had clinical PID. Patients with trichomoniasis had a significantly higher risk of PID than did women without trichomoniasis (P = .03). PID was not associated with any of the other pathogens. When the patients were stratified according to HIV-1 status, the risk of PID in HIV-1-infected patients with T. vaginalis increased significantly (P = .002); no association was found in patients without HIV-1. T. vaginalis infection of the lower genital tract is associated with a clinical diagnosis of PID in HIV-1-infected women.
Resumo:
Early HIV-1 reverse transcription can be separated into initiation and elongation phases. Here we show, using PCR analysis of negative-strand strong-stop DNA [(-)ssDNA] synthesis in intact virus, that different reverse transcriptase (RT) inhibitors affect distinct phases of early natural endogenous reverse transcription (NERT), The effects of nevirapine on NERT were consistent with a mechanism of action including both specific and nonspecific binding events. The nonspecific component of this inhibition targeted the elongation reaction, whereas the specific effect seemed principally to be directed at very early events (initiation or the initiation-elongation switch), In contrast, foscarnet and the nucleoside analog ddATP inhibited both early and late (-)ssDNA synthesis in a similar manner. We also examined compounds that targeted other viral proteins and found that Ro24-7429 (a Tat antagonist) and rosmarinic acid (an integrase inhibitor) also directly inhibited RT, Our results indicate that NERT can be used to identify and evaluate compounds that directly target the reverse transcription complex.
Resumo:
Intracellular trafficking of retroviral RNAs is a potential mechanism to target viral gene expression to specific regions of infected cells. Here we show that the human immunodeficiency virus type 1 (HIV-1) genome contains two sequences similar to the hnRNP A2 response element (A2RE), a cis-acting RNA trafficking sequence that binds to the trans-acting trafficking factor, hnRNP A2, and mediates a specific RNA trafficking pathway characterized extensively in oligodendrocytes. The two HIV-1 sequences, designated A2RE-1, within the major homology region of the gag gene, and A2RE-2, in a region of overlap between the vpr and tat genes, both bind to hnRNP A2 in vitro and are necessary and sufficient for RNA transport in oligodendrocytes in vivo. A single base change (A8G) in either sequence reduces hnRNP A2 binding and, in the case of A2RE-2, inhibits RNA transport. A2RE-mediated RNA transport is microtubule and hnRNP A2 dependent. Differentially labelled gag and vpr RNAs, containing A2RE-1 and A2RE-2, respectively, coassemble into the same RNA trafficking granules and are cotransported to the periphery of the cell. tat RNA, although it contains A2RE-2, is not transported as efficiently as vpr RNA. An A2RE/hnRNP A2-mediated trafficking pathway for HIV RNA is proposed, and the role of RNA trafficking in targeting HIV gene expression is discussed.
Resumo:
Parasite resistance to antimalarial drugs is a serious threat to human health, and novel agents that act on enzymes essential for parasite metabolism, such as proteases, are attractive targets for drug development. Recent studies have shown that clinically utilized human immunodeficiency virus (HIV) protease inhibitors can inhibit the in vitro growth of Plasmodium falciparum at or below concentrations found in human plasma after oral drug administration. The most potent in vitro antimalarial effects have been obtained for parasites treated with saquinavir, ritonavir, or lopinavir, findings confirmed in this study for a genetically distinct P. falciparum line (3D7). To investigate the potential in vivo activity of antiretroviral protease inhibitors (ARPIs) against malaria, we examined the effect of ARPI combinations in a murine model of malaria. In mice infected with Plasmodium chabaudi AS and treated orally with ritonavir-saquinavir or ritonavir-lopinavir, a delay in patency and a significant attenuation of parasitemia were observed. Using modeling and ligand docking studies we examined putative ligand binding sites of ARPIs in aspartyl proteases of P. falciparum (plasmepsins II and IV) and P. chabaudi (plasmepsin) and found that these in silico analyses support the antimalarial activity hypothesized to be mediated through inhibition of these enzymes. In addition, in vitro enzyme assays demonstrated that P. falciparum plasmepsins II and IV are both inhibited by the ARPIs saquinavir, ritonavir, and lopinavir. The combined results suggest that ARPIs have useful antimalarial activity that may be especially relevant in geographical regions where HIV and P. falciparum infections are both endemic.
Resumo:
The intracellular trafficking and subsequent incorporation of Gag-Pol into human immunodeficiency virus type 1 (HIV-1) remains poorly defined. Gag-Pol is encoded by the same mRNA as Gag and is generated by ribosomal frameshifting. The multimerization of Gag and Gag-Pol is an essential step in the formation of infectious viral particles. In this study, we examined whether the interaction between Gag and Gag-Pol is initiated during protein translation in order to facilitate the trafficking and subsequent packaging of Gag-Pol into the virion. A conditional cotransfection system was developed in which virion formation required the coexpression of two HIV-1-based plasmids, one that produces both Gag and Gag-Pol and one that only produces Gag-Pol. The Gag-Pol proteins were either immunotagged with a His epitope or functionally tagged with a mutation (K65R) in reverse transcriptase that is associated with drug resistance. Gag-Pol packaging was assessed to determine whether the Gag-Pol incorporated into the virion was preferentially packaged from the plasmid that expressed both Gag and Gag-Pol or whether it could be packaged from either plasmid. Our data show that translation of Gag and Gag-Pol from the same mRNA is not critical for virion packaging of the Gag-Pol polyprotein or for viral function.
Resumo:
Vaccines to efficiently block or limit sexual transmission of both HIV and human papilloma virus (HPV) are urgently needed. Chimeric virus-like-particle (VLP) vaccines consisting of both multimerized HPV L1 proteins and fragments of SIV gag p27, HIV-1 tat, and HIV-1 rev proteins (HPV-SHIV VLPs) were constructed and administered to macaques both systemically and mucosally. An additional group of macaques first received a priming vaccination with DNA vaccines expressing the same SIV and HIV-1 antigens prior to chimeric HPV-SHIV VLP boosting vaccinations. Although HPV L1 antibodies were induced in all immunized macaques, weak antibody or T cell responses to the chimeric SHIV antigens were detected only in animals receiving the DNA prime/HPV-SHIV VLP boost vaccine regimen. Significant but partial protection from a virulent mucosal SHIV challenge was also detected only in the prime/boosted macaques and not in animals receiving the HPV-SHIV VLP vaccines alone, with three of five prime/boosted animals retaining some CD4+ T cells following challenge. Thus, although some immunogenicity and partial protection was observed in non-human primates receiving both DNA and chimeric HPV-SHIV VLP vaccines, significant improvements in vaccine design are required before we can confidently proceed with this approach to clinical trials. (C) 2002 Elsevier Science (USA).
Resumo:
The tat gene is required by HIV-1 for efficient reverse transcription and this function of Tat can be distinguished from its role in transcription by RNA polymerase II using tat point mutations that abrogate each function independently The mechanism of Tat's role in reverse transcription, however, is not known, nor is it known whether this role is conserved among trans-activating factors in other retroviruses. Here we examine the abilities of heterologous viral trans-activating proteins from jembrana disease virus (jTat), HIV-2 (Tat2), and equine infectious anemia virus (eTat) to substitute for HIV-1 Tat (Tat1) and restore reverse transcription in HIV-1 carrying an inactivated tat gene. Natural endogenous reverse transcription assays showed that trans-activators from some retroviruses (Tat2 and jTat, but not eTat) could substitute for Tat1 in complementation of HIV-1 reverse transcription. Finally, we show that Y47 is critical for Tat1 to function in reverse transcription, but not HIV-1 gene expression. We mutated the homologous position in jTat to H62Y and found it did not improve its ability to stimulate reverse transcription, but an H62A mutation did inhibit jTat complementation. These data highlight the finding that the role of Tat in reverse transcription is not related to trans-activation and demonstrate that other tat genes conserve this function. (C) 2002 Elsevier Science (USA).
Resumo:
We have previously demonstrated the ability of the vaccine vectors based on replicon RNA of the Australian flavivirus Kunjin (KUN) to induce protective antiviral and anticancer CD8(+) T-cell responses using murine polyepitope as a model immunogen (I. Anraku, T. J. Harvey, R. Linedale, J. Gardner, D. Harrich, A. Suhrbier, and A. A. Khromykh, J. Virol. 76:3791-3799, 2002). Here we showed that immunization of BALB/c mice with KUN replicons encoding HIV-1 Gag antigen resulted in induction of both Gag-specific antibody and protective Gag-specific CD8(+) T-cell responses. Two immunizations with KUNgag replicons in the form of virus-like particles (VLPs) induced anti-Gag antibodies with titers of greater than or equal to1:10,000. Immunization with KUNgag replicons delivered as plasmid DNA, naked RNA, or VLPs induced potent Gag-specific CD8(+) T-cell responses, with one immunization of KUNgag VLPs inducing 4.5-fold-more CD8(+) T cells than the number induced after immunization with recombinant vaccinia virus carrying the gag gene (rVVgag). Two immunizations with KUNgag VLPs also provided significant protection against challenge with rVVgag. Importantly, KUN replicon VLP vaccinations induced long-lasting immune responses with CD8(+) T cells able to secrete gamma interferon and to mediate protection 6 to 10 months after immunization. These results illustrate the potential value of the KUN replicon vectors for human immunodeficiency virus vaccine design.
Resumo:
Feline immunodeficiency virus (FIV), a lentivirus, is an important pathogen of domestic cats around the world and has many similarities to human immunodeficiency virus (HIV). A characteristic of these lentiviruses is their extensive genetic diversity which has been an obstacle in the development of successful vaccines. Of the FIV genes, the envelope gene is the most variable and sequence differences in a portion of this gene have been used to define 5 FIV subtypes (A, B, C, D and E). In this study, the proviral DNA sequence of the V3-V5 region of the envelope gene was determined in blood samples from 31 FIV positive cats from 4 different regions of South Africa. Phylogenetic analysis demonstrated the presence of both subtypes A and C, with subtype A predominating. These findings contribute to the understanding of the genetic diversity of FIV
Resumo:
Infection of humans with the West Nile flavivirus principally occurs via tick and mosquito bites. Here, we document the expression of antigen processing and presentation molecules in West Nile virus (WNV)-infected human skin fibroblast (HFF) cells. Using a new Flavivirus-specific antibody, 4G4, we have analyzed cell surface human leukocyte antigen (HLA) expression on virus-infected cells at a single cell level. Using this approach, we show that West Nile Virus infection alters surface HLA expression on both infected HFF and neighboring uninfected HFF cells. Interestingly, increased surface HLA evident on infected HFF cultures is almost entirely due to virus-induced interferon (IFN)alpha/beta because IFNalpha/beta-neutralizing antibodies completely prevent increased surface HLA expression. In contrast, RT-PCR analysis indicates that WNV infection results in increased mRNAs for HLA-A, -B, and -C genes, and HLA-associated molecules low molecular weight polypeptide-2 (LMP-2) and transporter associated with antigen presentation-1 (TAP-1), but induction of these mRNAs is not diminished in HFF cells cultured with IFNalpha/beta-neutralizing antibodies. Taken together, these data support the idea that that both cytokine-dependent and cytokine-independent mechanisms account for WNV-induced HLA expression in human skin fibroblasts. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Objective: To determine the effectiveness of twice-weekly directly observed therapy (DOT) for tuberculosis (TB) in HIV-infected and uninfected patients, irrespective of their previous treatment history. Also to determine the predictive value of 2-3 month smears on treatment outcome. Methods: Four hundred and sixteen new and 113 previously treated adults with culture positive pulmonary TB (58% HIV infected, 9% combined drug resistance) in Hlabisa, South Africa. Daily isoniazid (H), rifampicin (R), pyrazinamide (Z) and ethambutol (E) given in hospital (median 17 days), followed by HRZE twice a week to 2 months and HR twice a week to 6 months in the community. Results: Outcomes at 6 months among the 416 new patients were: transferred out 2%; interrupted treatment 17%; completed treatment 3%; failure 2%; and cured 71%. Outcomes were similar among HIV-infected and uninfected patients except for death (6 versus 2%; P = 0.03). Cure was frequent among adherent HIV-infected (97%; 95% CI 94-99%) and uninfected (96%; 95% CI 92-99%) new patients. Outcomes were similar among previously treated and new patients, except for death (11 versus 4%; P = 0.01), and cure among adherent previously treated patients 97% (95% CI 92-99%) was high. Smear results at 2 months did not predict the final outcome. Conclusion: A twice-weekly rifampicin-containing drug regimen given under DOT cures most adherent patients irrespective of HIV status and previous treatment history. The 2 month smear may be safely omitted. Relapse rates need to be determined, and an improved system of keeping treatment interrupters on therapy is needed. Simplified TB treatment may aid implementation of the DOTS strategy in settings with high TB caseloads secondary to the HIV epidemic. (C) 1999 Lippincott Williams & Wilkins.
Resumo:
Primary infection with the human herpesvirus, Epstein-Barr virus (EBV), may result in subclinical seroconversion or may appear as infectious mononucleosis (IM), a lymphoproliferative disease of variable severity. Why primary infection manifests differently between patients is unknown, and, given the difficulties in identifying donors undergoing silent seroconversion, little information has been reported. However, a longstanding assumption has been held that IM represents an exaggerated form of the virologic and immunologic events of asymptomatic infection. T-cell receptor (TCR) repertoires of a unique cohort of subclinically infected patients undergoing silent infection were studied, and the results highlight a fundamental difference between the 2 forms of infection. In contrast to the massive T-cell expansions mobilized during the acute symptomatic phase of IM, asymptomatic donors largely maintain homeostatic T-cell control and peripheral blood repertoire diversity. This disparity cannot simply be linked to severity or spread of the infection because high levels of EBV DNA were found in the blood from both types of acute infection. The results suggest that large expansions of T cells within the blood during IM may not always be associated with the control of primary EBV infection and that they may represent an overreaction that exacerbates disease. (C) 2001 by The American Society of Hematology.
Resumo:
Objective To determine the prevalent subtypes of feline immunodeficiency virus (FIV) present in the domestic cat population of Australia. Method Blood samples were collected from 41 FIV antibody positive cats from four cities across Australia. Following DNA extraction, polymerase chain reaction (PCR) was performed to amplify the variable V3-V5 region of the envelope (env) gene. Genotypes were assessed by direct sequencing of PCR products and comparison with previously reported FIV sequences. Phylogenetic analysis allowed classification of the Australian sequences into the appropriate subtype. Results Of the 41 FIV samples, 40 were found to cluster with previously reported subtype A isolates, whilst the remaining sample grouped within subtype B. Conclusions Subtype A was found to be the predominant FIV subtype present in Australia, although subtype B was also found. These results broaden our knowledge of the genetic diversity of FIV and the associated implications for preventative, diagnostic and therapeutic approaches.
Resumo:
A mathematical model was developed to estimate HIV incidence in NSW prisons. Data included: duration of imprisonment; number of inmates using each needle; lower and higher number of shared injections per IDU per week; proportion of IDUs using bleach; efficacy of bleach; HIV prevalence and probability of infection. HIV prevalence in IDUs in prison was estimated to have risen from 0.8 to 5.7% (12.2%) over 180 weeks when using lower (and higher) values for frequency of shared injections. The estimated minimum (and maximum) number of IDU inmates infected with HIV in NSW prisons was 38 (and 152) in 1993 according to the model. These figures require confirmation by seroincidence studies. (C) 1998 Published by Elsevier Science Ireland Ltd. All rights reserved.