52 resultados para human T-cell lymphotropic virus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel protein crystallization strategy, applied to the crystallization of human T cell leukemia virus type 1 (HTLV-1) transmembrane protein gp21 lacking the fusion peptide and the transmembrane domain, as a chimera with the Escherichia coli maltose binding protein (MBP). Crystals could not be obtained with a MBP/gp21 fusion protein in which fusion partners were separated by a flexible linker, but were obtained after connecting the MBP C-terminal alpha-helix to the predicted N-terminal alpha-helical sequence of gp21 via three alanine residues. The gp21 sequences conferred a trimeric structure to the soluble fusion proteins as assessed by sedimentation equilibrium and X-ray diffraction, consistent with the trimeric structures of other retroviral transmembrane proteins. The envelope protein precursor, gp62, is likewise trimeric when expressed in mammalian cells. Our results suggest that MBP may have a general application for the crystallization of proteins containing N-terminal alpha-helical sequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retroviral entry into cells depends on envelope glycoproteins, whereby receptor binding to the surface-exposed subunit triggers membrane fusion by the transmembrane protein (TM) subunit. We determined the crystal structure at 2.5-Angstrom resolution of the ectodomain of gp21, the TM from human T cell leukemia virus type 1. The gp21 fragment was crystallized as a maltose-binding protein chimera, and the maltose-binding protein domain was used to solve the initial phases by the method of molecular replacement. The structure of gp21 comprises an N-terminal trimeric coiled coil, an adjacent disulfide-bonded loop that stabilizes a chain reversal, and a C-terminal sequence structurally distinct from HIV type 1/simian immunodeficiency virus gp41 that packs against the coil in an extended antiparallel fashion. Comparison of the gp21 structure with the structures of other retroviral TMs contrasts the conserved nature of the coiled coil-forming region and adjacent disulfide-bonded loop with the variable nature of the C-terminal ectodomain segment. The structure points to these features having evolved to enable the dual roles of retroviral TMs: conserved fusion function and an ability to anchor diverse surface-exposed subunit structures to the virion envelope and infected cell surface. The structure of gp21 implies that the N-terminal fusion peptide is in close proximity to the C-terminal transmembrane domain and likely represents a postfusion conformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retrovirus entry into cells follows receptor binding by the surface exposed envelope glycoprotein (Env) subunit (SU), which triggers the membrane fusion activity of the transmembrane (TM) protein. TM protein fragments expressed in the absence of SU adopt helical hairpin structures comprising a central coiled coil, a region of chain reversal containing a disulfide-bonded loop, and a C-terminal segment that packs onto the exterior of the coiled coil in an antiparallel manner. Here we used in vitro mutagenesis to test the functional role of structural elements observed in a model helical hairpin, gp21 of human T-lymphotropic virus type 1. Membrane fusion activity requires the stabilization of the N and C termini of the central coiled coil by a hydrophobic N cap and a small hydrophobic core, respectively. A conserved Gly-Gly hinge motif preceding the disulfide-bonded loop, a salt bridge that stabilizes the chain reversal region, and interactions between the C-terminal segment and the coiled coil are also critical for fusion activity. Our data support a model whereby the chain reversal region transmits a conformational signal from receptor-bound SU to induce the fusion-activated helical hairpin conformation of the TM protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monocyte macrophages (M phi) are thought to be the principal target cells for the dengue viruses (DV), the cause of dengue fever and hemorrhagic fever. Cell attachment is mediated by the virus envelope (E) protein, but the host-cell receptors remain elusive. Currently, candidate receptor molecules include proteins, Fc receptors, glycosaminoglycans (GAGs) and lipopolysaccharide binding CD14-associated molecules. Here, we show that in addition to M phi, cells of the T- and B-cell lineages, and including cells lacking GAGs, can bind and become infected with DV. The level of virus binding varied widely between cell lines and, notably, between virus strains within a DV serotype. The latter difference may be ascribable to one or more amino acid differences in domain II of the E protein. Heparin had no significant effect on DV binding, while heparinase treatment of cells in all cases increased DV binding, further supporting the contention that GAGs are not required for DV binding and infection of human cells. In contrast to a recent report, we found that lipopolysaccharide (LPS) had either no effect or enhanced DV binding to, and infection of various human leukocyte cell lines, while in all virus-cell combinations, depletion of Ca2+/Mg2+ enhanced DV binding. This argues against involvement of beta (2) integrins in virus-host cell interactions, a conclusion in accord with the demonstration of three virus binding membrane proteins of < 75 kDa. Collectively, the results of this study question the purported exclusive importance of the E protein domain III in DV binding to host cells and point to a far more complex interaction between various target cells and, notably, individual DV strains. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The initial step in viral infection is the attachment of the virus to the host cell via an interaction with its receptor. We have previously shown that a receptor for human papillomavirus is the alpha6 integrin. The alpha6 integrin is involved in the attachment of epithelial cells with the basement membrane, but recent evidence suggests that ligation of many integrins results in intracellular signaling events that influence cell proliferation. sere we present evidence that exposure of A431 human epithelial cells to human papillomavirus type 6b L1 virus-like particles (VLPs) results in a dose-dependent increase in cell proliferation, as measured by bromodeoxyuridine incorporation. This proliferation is Lost if VLPs are first denatured or incubated with a monoclonal antibody against L1 protein. The MEK1 inhibitor PB98059 inhibits the VLP-mediated increase in fell proliferation, suggesting involvement of the Ras-MAP kinase pathway, Indeed, VLP binding results in rapid phosphorylation of the beta4 integrin upon tyrosine residues and subsequent recruitment of the adapter protein She to beta4, Within 30 min, the activation of Ras, Raf, and Erk2 was observed. Finally, the upregulation of c-myc mRNA was observed at 60 min, These data indicate that human papillomavirus type 6b is able to signal cells via the Ras-MAP kinase pathway to induce cell proliferation. We hypothesize that such a mechanism would allow papillomaviruses to infect hosts more successfully by increasing the potential pool of cells they are able to infect via the initiation of proliferation in resting keratinocyte stem and suprabasal cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We cloned the complete complementary DNA of an isolate of the hepatitis C virus, HCV-S1, into a tetra cycline-inducible expression vector and stably transfected it into two human hepatoma cell lines, Huh7 and HepG2. Twenty-six Huh7 and two HepG2-positive clones were obtained after preliminary screening. Two Huh7 (SH-7 and -9) and one HepG2 (G-19) clones were chosen for further characterisation. Expression of HCV proteins in these cells accumulated from 6 In to 4 days posttreatment. Full-length viral plus-strand RNA was detected by Northern analyses. Using RT-PCR and ribonuclease protection assay, we also detected the synthesis of minus-strand HCV RNA. Plus- and minus-strand viral RNA was still detected after treatment with actinomycin D. Indirect immunofluorescence staining with anti-E2, NS4B, and NS5A revealed that these proteins were mostly localised to the endoplasmic reticulum (ER). Culture media from tet-induced SH-9 cells was separated on sucrose density gradients and analysed for the presence of HCV RNA. Viral RNA levels peaked at two separate ranges, one with a buoyant density of 1.08 g/ml and another from 1.17 to 1.39 g/ml. Electron microscopy demonstrated the presence of subviral-like particles (approximately 20-25 nm in diameter) in the cytoplasm of SH-9 and G-19 cells, which were positively labelled by anti-HCV core antibodies. Anti-E2 antibodies strongly labelled cytoplasmic vesicular structures and some viral-like particles. Complete viral particles of about 50 nm which reacted with anti-E2 antibodies were observed in the culture media of tet-induced SH-9 cells following negative staining. Supernatant from tet-treated SH-9 cells was found to infect naive Huh7 and stable Huh7-human CD81 cells. (C) 2002 Elsevier Science (USA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The underlying generic properties of {alpha}β TCRs that control MHC restriction remain largely unresolved. To investigate MHC restriction, we have examined the CTL response to a viral epitope that binds promiscuously to two human leukocyte Ags (HLAs) that differ by a single amino acid at position 156. Individuals expressing either HLA-B*3501 (156Leucine) or HLA-B*3508 (156Arginine) showed a potent CTL response to the 407HPVGEADYFEY417 epitope from EBV. Interestingly, the response was characterized by highly restricted TCR β-chain usage in both HLA-B*3501+ and HLA-B*3508+ individuals; however, this conserved TRBV9+ β-chain was associated with distinct TCR {alpha}-chains depending upon the HLA-B*35 allele expressed by the virus-exposed host. Functional assays confirmed that TCR {alpha}-chain usage determined the HLA restriction of the CTLs. Structural studies revealed significant differences in the mobility of the peptide when bound to HLA-B*3501 or HLA-B*3508. In HLA-B*3501, the bulged section of the peptide was disordered, whereas in HLA-B*3508 the bulged epitope adopted an ordered conformation. Collectively, these data demonstrate not only that mobile MHC-bound peptides can be highly immunogenic but can also stimulate an extremely biased TCR repertoire. In addition, TCR {alpha}-chain usage is shown to play a critical role in controlling MHC restriction between closely related allomorphs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phospholipids in plasma membranes of erythrocytes, as well as platelets, lymphocytes and other cells are asymmetrically distributed, with sphingomyelin and phosphatidylcholine residing predominantly in the outer leaflet of the bilayer, and phosphatidylserine and phosphatidylethanolamine in the inner leaflet. It is known that Ca2+ can disrupt the phospholipid asymmetry by activation of a protein known as phospholipid scramblase, which affects bidirectional phospholipid movement in a largely non-selective manner. As Ca2+ also inhibits aminophospholipid translocase, whose Mg2+-ATPase activity is responsible for active translocation of aminophospholipids from the outer to the inner leaflet, it is important to accurately determine the sensitivity of scramblase to intracellular free Ca2+. In the present study we have utilized the favourable K-d, of Mag-fura-2 for calcium in the high micromolar range to determine free Ca2+ levels associated with lipid scrambling in resealed human red cell ghosts. The Ca2+ sensitivity was measured in parallel to the translocation of a fluorescent-labelled lipid incorporated into the ghost bilayer. The phospholipid scrambling was found to be half-maximally activated at 63-88 mu M free intracellular Ca2+. The wider applicability of the method and the physiological implications of the calcium sensitivity determined is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contribution of synovial cells to the pathogenesis of rheumatoid arthritis (RA) is only partly understood. Monoclonal antibody (mAb) 1D5 is one of very few mAb ever raised against RA synovial cells in order to study the biology of these cells. Studies on the expression pattern and structural features of the 1D5 Ag suggest that 1D5 recognizes human vascular cell adhesion molecule-1 (VCAM-1), which is an intercellular adhesion molecule. Vascular cell adhesion molecule-1 may be involved in a number of crucial intercellular interactions in RA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Saturated fat plays a role in common debilitating diseases such as obesity, type 2 diabetes, and coronary heart disease. It is also clear that certain fatty acids act as regulators of metabolism via both direct and indirect signalling of target tissues. As the molecular mechanisms of saturated fatty acid signalling in the liver are poorly defined, hepatic gene expression analysis was undertaken in a human hepatocyte cell line after incubation with palmitate. Profiling of mRNA expression using cDNA microarray analysis revealed that 162 of approximately 18,000 genes tested were differentially expressed after incubation with palmitate for 48 h. Altered transcription profiles were observed in a wide variety of genes, including genes involved in lipid and cholesterol transport, cholesterol catabolism, cell growth and proliferation, cell signalling, P-oxidation, and oxidative stress response. While palinitate signalling has been examined in pancreatic beta-cells, this is the first report showing that palmitate regulates expression of numerous genes via direct molecular signalling mechanisms in liver cells. (C) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To address the issue of melanocortin-1 receptor (MC1R) expression in non-melanocytic cells, we have quantitatively evaluated the relative expression levels of both MC1R mRNA and protein in a subset of different cell types. Using semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) at high cycle numbers, we detected MC1R mRNA in all cell types examined, including human embryonic kidney-293 (HEK 293) cells, a cell type widely used as a negative control in melanocortin expression studies. Quantitative real-time PCR revealed the highest levels of MC1R transcripts were in melanocytic cells, whereas the keratinocyte and fibroblast cell cultures examined had only a low level of expression, similar to that of HEK 293 cells. Antibody mediated detection of MC1R protein in membrane extracts demonstrated exogenous receptor in MC1R transfected cell lines, as well as endogenous MC1R in melanoma cells. However, radioligand binding procedures were required to detect MC1R protein of normal human melanocytes and no surface expression of MC1R was detected in any of the non-melanocytic cells examined. This was consistent with their low level of mRNA, and suggests that, if present, the levels of surface receptor are significantly lower than that in melanocytes. The capacity of such limited levels of MC1R protein to influence non-melanocytic skin cell biology would likely be severely compromised. Indeed, the MC1R agonist [NIe(4), D-Phe(7)] alpha-melanocyte stimulating hormone (NDP-MSH) was unable to elevate intracellular cyclic adenosine monophosphate (cAMP) levels in the keratinocyte and fibroblast cells examined, whereas a robust increase was elicited in melanocytes. Although there are a variety of cell types with detectable MC1R mRNA, the expression of physiologically significant levels of the receptor may be more restricted than the current literature indicates, and within epidermal tissue may be limited to the melanocyte

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pentameric capsomeres of human papillomavirus capsid protein L1 expressed in Escherichia coli self-assemble into virus-like particles (VLPs) in vitro. A multifactorial experimental design was used to explore a wide range of solution conditions to optimize the assembly process. The degree of assembly was measured using an enzyme-linked immunosorbent assay, and a high-throughput turbidity assay was developed to monitor competing aggregation. The presence of zinc ions in the assembly buffer greatly increased the incidence of aggregation and had to be excluded from the experiment for meaningful analysis. Assembly of VLPs was optimal at a pH of about 6.5, calcium and sodium ions had no measurable effect, and dithiothreitol and glutathione inhibited assembly. Tryptophan fluorescence spectroscopy demonstrated that an increase in urea concentration reduced the rate of VLP formation but had no effect on the final concentration of assembled VLPs. This study demonstrates the use of the hanging-drop vapor-diffusion crystallization method to screen for conditions that promote aggregation and the use of tryptophan fluorescence spectroscopy for real-time monitoring of the assembly process.