17 resultados para driven harmonic oscillator classical dynamics
Resumo:
Using only linear interactions and a local parity measurement we show how entanglement can be detected between two harmonic oscillators. The scheme generalizes to measure both linear and nonlinear functionals of an arbitrary oscillator state. This leads to many applications including purity tests, eigenvalue estimation, entropy, and distance measures-all without the need for nonlinear interactions or complete state reconstruction. Remarkably, experimental realization of the proposed scheme is already within the reach of current technology with linear optics.
Resumo:
How does the classical phase-space structure for a composite system relate to the entanglement characteristics of the corresponding quantum system? We demonstrate how the entanglement in nonlinear bipartite systems can be associated with a fixed-point bifurcation in the classical dynamics. Using the example of coupled giant spins we show that when a fixed point undergoes a supercritical pitchfork bifurcation, the corresponding quantum state-the ground state-achieves its maximum amount of entanglement near the critical point. We conjecture that this will be a generic feature of systems whose classical limit exhibits such a bifurcation.
Resumo:
We analyze the critical quantum fluctuations in a coherently driven planar optical parametric oscillator. We show that the presence of transverse modes combined with quantum fluctuations changes the behavior of the quantum image critical point. This zero-temperature nonequilibrium quantum system has the same universality class as a finite-temperature magnetic Lifshitz transition.
Resumo:
In this work, we investigate the quantum dynamics of a model for two singlemode Bose-Einstein condensates which are coupled via Josephson tunnelling. Using direct numerical diagonalization of the Hamiltonian, we compute the time evolution of the expectation value for the relative particle number across a wide range of couplings. Our analysis shows that the system exhibits rich and complex behaviours varying between harmonic and non-harmonic oscillations, particularly around the threshold coupling between the delocalized and selftrapping phases. We show that these behaviours are dependent on both the initial state of the system and regime of the coupling. In addition, a study of the dynamics for the variance of the relative particle number expectation and the entanglement for different initial states is presented in detail.
Resumo:
We study a model for a two-mode atomic-molecular Bose-Einstein condensate. Starting with a classical analysis we determine the phase space fixed points of the system. It is found that bifurcations of the fixed points naturally separate the coupling parameter space into four regions. The different regions give rise to qualitatively different dynamics. We then show that this classification holds true for the quantum dynamics.
Resumo:
Cold atoms in optical potentials provide an ideal test bed to explore quantum nonlinear dynamics. Atoms are prepared in a magneto-optic trap or as a dilute Bose-Einstein condensate and subjected to a far detuned optical standing wave that is modulated. They exhibit a wide range of dynamics, some of which can be explained by classical theory while other aspects show the underlying quantum nature of the system. The atoms have a mixed phase space containing regions of regular motion which appear as distinct peaks in the atomic momentum distribution embedded in a sea of chaos. The action of the atoms is of the order of Planck's constant, making quantum effects significant. This tutorial presents a detailed description of experiments measuring the evolution of atoms in time-dependent optical potentials. Experimental methods are developed providing means for the observation and selective loading of regions of regular motion. The dependence of the atomic dynamics on the system parameters is explored and distinct changes in the atomic momentum distribution are observed which are explained by the applicable quantum and classical theory. The observation of a bifurcation sequence is reported and explained using classical perturbation theory. Experimental methods for the accurate control of the momentum of an ensemble of atoms are developed. They use phase space resonances and chaotic transients providing novel ensemble atomic beamsplitters. The divergence between quantum and classical nonlinear dynamics is manifest in the experimental observation of dynamical tunnelling. It involves no potential barrier. However a constant of motion other than energy still forbids classically this quantum allowed motion. Atoms coherently tunnel back and forth between their initial state of oscillatory motion and the state 180 out of phase with the initial state.
Resumo:
Queensland fruit fly, Bactrocera (Dacus) tryoni (QFF) is arguably the most costly horticultural insect pest in Australia. Despite this, no model is available to describe its population dynamics and aid in its management. This paper describes a cohort-based model of the population dynamics of the Queensland fruit fly. The model is primarily driven by weather variables, and so can be used at any location where appropriate meteorological data are available. In the model, the life cycle is divided into a number of discreet stages to allow physiological processes to be defined as accurately as possible. Eggs develop and hatch into larvae, which develop into pupae, which emerge as either teneral females or males. Both females and males can enter reproductive and over-wintering life stages, and there is a trapped male life stage to allow model predictions to be compared with trap catch data. All development rates are temperature-dependent. Daily mortality rates are temperature-dependent, but may also be influenced by moisture, density of larvae in fruit, fruit suitability, and age. Eggs, larvae and pupae all have constant establishment mortalities, causing a defined proportion of individuals to die upon entering that life stage. Transfer from one immature stage to the next is based on physiological age. In the adult life stages, transfer between stages may require additional and/or alternative functions. Maximum fecundity is 1400 eggs per female per day, and maximum daily oviposition rate is 80 eggs/female per day. The actual number of eggs laid by a female on any given day is restricted by temperature, density of larva in fruit, suitability of fruit for oviposition, and female activity. Activity of reproductive females and males, which affects reproduction and trapping, decreases with rainfall. Trapping of reproductive males is determined by activity, temperature and the proportion of males in the active population. Limitations of the model are discussed. Despite these, the model provides a useful agreement with trap catch data, and allows key areas for future research to be identified. These critical gaps in the current state of knowledge exist despite over 50 years of research on this key pest. By explicitly attempting to model the population dynamics of this pest we have clearly identified the research areas that must be addressed before progress can be made in developing the model into an operational tool for the management of Queensland fruit fly. (C) 2003 Published by Elsevier B.V.
Resumo:
We present a fully quantum mechanical treatment of the nondegenerate optical parametric oscillator both below and near threshold. This is a nonequilibrium quantum system with a critical point phase transition, that is also known to exhibit strong yet easily observed squeezing and quantum entanglement. Our treatment makes use of the positive P representation and goes beyond the usual linearized theory. We compare our analytical results with numerical simulations and find excellent agreement. We also carry out a detailed comparison of our results with those obtained from stochastic electrodynamics, a theory obtained by truncating the equation of motion for the Wigner function, with a view to locating regions of agreement and disagreement between the two. We calculate commonly used measures of quantum behavior including entanglement, squeezing, and Einstein-Podolsky-Rosen (EPR) correlations as well as higher order tripartite correlations, and show how these are modified as the critical point is approached. These results are compared with those obtained using two degenerate parametric oscillators, and we find that in the near-critical region the nondegenerate oscillator has stronger EPR correlations. In general, the critical fluctuations represent an ultimate limit to the possible entanglement that can be achieved in a nondegenerate parametric oscillator.
Resumo:
The classical paradigm for T cell dynamics suggests that the resolution of a primary acute virus infection is followed by the generation of a long-lived pool of memory T cells that is thought to be highly stable. Very limited alteration in this repertoire is expected until the immune system is re-challenged by reactivation of latent viruses or by cross-reactive pathogens. Contradicting this view, we show here that the T cell repertoire specific for two different latent herpes viruses in the peripheral blood displayed significant contemporaneous co-fluctuations of virus-specific CD8(+) T cells. The coordinated responses to two different viruses suggest that the fluctuations within the T cell repertoire may be driven by sub-clinical viral reactivation or a more generalized 'bystander' effect. The later contention was supported by the observation that, while absolute number of CD3(+) T cells and their subsets and also the cell surface phenotype of antigen-specific T cells remained relatively constant, a loss of CD62L expression in the total CD8(+) T cell population was coincident with the expansion of tetramer-positive virus-specific T cells. This study demonstrates that the dynamic process of T cell expansion and contractions in persistent viral infections is not limited to the acute phase of infection, but also continues during the latent phase of infection.
Resumo:
We derive a master equation for a driven double quantum dot damped by an unstructured phonon bath, and calculate the spectral density. We find that bath-mediated photon absorption is important at relatively strong driving, and may even dominate the dynamics, inducing population inversion of the double-dot system. This phenomenon is consistent with recent experimental observations.
Resumo:
We extend the projected Gross-Pitaevskii equation formalism of Davis [Phys. Rev. Lett. 87, 160402 (2001)] to the experimentally relevant case of thermal Bose gases in harmonic potentials and outline a robust and accurate numerical scheme that can efficiently simulate this system. We apply this method to investigate the equilibrium properties of the harmonically trapped three-dimensional projected Gross-Pitaevskii equation at finite temperature and consider the dependence of condensate fraction, position, and momentum distributions and density fluctuations on temperature. We apply the scheme to simulate an evaporative cooling process in which the preferential removal of high-energy particles leads to the growth of a Bose-Einstein condensate. We show that a condensate fraction can be inferred during the dynamics even in this nonequilibrium situation.
Resumo:
The ergodic hypothesis asserts that a classical mechanical system will in time visit every available configuration in phase space. Thus, for an ergodic system, an ensemble average of a thermodynamic quantity can equally well be calculated by a time average over a sufficiently long period of dynamical evolution. In this paper, we describe in detail how to calculate the temperature and chemical potential from the dynamics of a microcanonical classical field, using the particular example of the classical modes of a Bose-condensed gas. The accurate determination of these thermodynamics quantities is essential in measuring the shift of the critical temperature of a Bose gas due to nonperturbative many-body effects.
Resumo:
Functional interactions between classical cadherins and the actin cytoskeleton involve diverse actin activities, including filament nucleation, cross-linking, and bundling. In this report, we explored the capacity of Ena/VASP proteins to regulate the actin cytoskeleton at cadherin-adhesive contacts. We extended the observation that Ena/vasodilator-stimulated phosphoprotein (VASP) proteins localize at cell-cell contacts to demonstrate that E-cadherin homophilic ligation is sufficient to recruit Mena to adhesion sites. Ena/VASP activity was necessary both for F-actin accumulation and assembly at cell-cell contacts. Moreover, we identified two distinct pools of Mena within individual homophilic adhesions that cells made when they adhered to cadherin-coated substrata. These Mena pools localized with Arp2/3-driven cellular protrusions as well as at the tips of cadherin-based actin bundles. Importantly, Ena/VASP activity was necessary for both modes of actin activity to be expressed. Moreover, selective depletion of Ena/VASP proteins from the tips of cadherin-based bundles perturbed the bundles without affecting the protrusive F-actin pool. We propose that Ena/VASP proteins may serve as higher order regulators of the cytoskeleton at cadherin contacts through their ability to modulate distinct modes of actin organization at those contacts.
Resumo:
Oxygen consumption rates (OCR), aerobic mineralization and sulfate reduction rates (SRR) were studied in the permeable carbonate reef sediments of Heron Reef, Australia. We selected 4 stations with different hydrodynamic regimes for this study. In situ oxygen penetration into the sediments was measured with an autonomous microsensor profiler. Areal OCR were quantified from the measured oxygen penetration depth and volumetric OCR. Oxygen penetration and dynamics (median penetration depths at the 4 stations ranged between 0.3 and 2.2 cm), OCR (median 57 to 196 mmol C m(-2) d(-1)), aerobic mineralization (median 24 to 176 mmol C m(-2) d(-1)) and SRR (median 9 to 42 mmol C m(-2) d(-1)) were highly variable between sites. The supply of oxygen by pore water advection was a major cause for high mineralization rates by stimulating aerobic mineralization at all sites. However, estimated bottom water filtration rates could not explain the differences in volumetric OCR and SRR between the 4 stations. This suggests that local mineralization rates are additionally controlled by factors other than current driven pore water advection, e.g. by the distribution of the benthic fauna or by local differences in labile organic carbon supply from sources such as benthic photosynthesis. Carbon mineralization rates were among the highest reported for coral reef sediments, stressing the role of these sediments in the functioning of the reef ecosystem.