19 resultados para container transhipment gigantismo terminal NAPA intermodale
Resumo:
Nerve sprouts emerge from motor nerve terminals following blockade of exo-endocytosis for more than 3 days by botulinum neurotoxin (BoNT), and form functional synapses, albeit temporary. Upon restoration of synaptic activity to the parent terminal 7 and 90 days after exposure to BoNT/F or A respectively, a concomitant retraction of the outgrowths was observed. BoNT/E caused short-term neuroparalysis, and dramatically accelerated the recovery of BoNT/A-paralyzed muscle by further truncation of SNAP-25 and its replenishment with functional full-length SNARE. The removal of 9 C-terminal residues from SNAP-25 by BoNT/A leads to persistence of the inhibitory product due to the formation of a nonproductive SNARE complex(es) at release sites, whereas deletion of a further 17 amino acids permits replenishment and a speedy recovery. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Background. There is considerable debate regarding the clinical issues surrounding the wish to hasten death (WTHD) in the terminally ill. The clinical factors contributing to the WTHD need further investigation among the terminally ill in order to enhance understanding of the clinical assessment and treatment needs that underlie this problem. A more detailed understanding may assist with the development of appropriate therapeutic interventions. Method. A sample of terminally ill cancer patients (N=256) recruited from an in-patient hospice unit, home palliative care service and a general hospital palliative care consulting service from Brisbane Australia between 1998-2001 completed a questionnaire assessing psychological (depression and anxiety), social (family relationship, social support, level of burden on others) and the impact of physical symptoms. The association between these factors and the WTHD was investigated. Results. A high WTHD was reported by 14% of patients. A discriminant function analysis revealed that the following variables were associated with a high WTHD (P
Resumo:
This letter describes a new idea of increasing operational bandwidth of a compact planar inverted F antenna (PIFA) by introducing open-end slots in the ground plane under the radiating patch. The slots are not in the way of active modules of a wireless transceiver and thus the proposed antenna size reduction method is attractive from the point of view of practical implementation.
Resumo:
The folding of HIV gp41 into a 6-helix bundle drives virus-cell membrane fusion. To examine the structural relationship between the 6-helix bundle core domain and other regions of gp41, we expressed in Escherichia coli, the entire ectodomain of HIV-2(ST) gp41 as a soluble, trimeric maltose-binding protein (MBP)/gp41 chimera. Limiting proteolysis indicated that the Cys-591-Cys-597 disulfide-bonded region is outside a core domain comprising two peptides, Thr-529-Trp-589 and Val-604-Ser-666. A biochemical examination of MBP/gp41 chimeras encompassing these core peptides; indicated that the N-terminal polar segment, 521-528, and C-terminal membrane-proximal segment, 658-666, cooperate in stabilizing the ectodomain. A functional interaction between sequences outside the gp41 core may contribute energy to membrane fusion. (C) 2004 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
We report the crystal structure of the N-terminal domain of Escherichia coli adenylyltransferase that catalyzes the reversible nucleotidylation of glutamine synthetase (GS), a key enzyme in nitrogen assimilation. This domain (AT-N440) catalyzes the deadenylylation and subsequent activation of GS. The structure has been divided into three subdomains, two of which bear some similarity to kanamycin nucleotidyltransferase (KNT). However, the orientation of the two domains in AT-N440 differs from that in KNT. The active site of AT-N440 has been identified on the basis of structural comparisons with KNT, DNA polymerase beta, and polyadenylate polymerase. AT-N440 has a cluster of metal binding residues that are conserved in polbeta-like nucleotidyl transferases. The location of residues conserved in all ATase sequences was found to cluster around the active site. Many of these residues are very likely to play a role in catalysis, substrate binding, or effector binding.
Resumo:
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a chloride channel present in many cells. In cardiomyocytes, we report that multiple exon 1 usage and alternative splicing produces four CFTR transcripts, with different 5'-untranslated regions, CFTRTRAD-139, CFTR-1C/-1A, CFTR-1C, and CFTR-1B. CFTR transcripts containing the novel upstream exons (exons -1C, -1B, and -1A) represent more than 90% of cardiac expressed CFTR mRNA. Regulation of cardiac CFTR expression, in response to developmental and pathological stimuli, is exclusively due to the modulation of CFTR-1C and CFTR-1C/-1A expression. Upstream open reading frames have been identified in the 5'-untranslated regions of all CFTR transcripts that, in conjunction with adjacent stem-loop structures, modulate the efficiency of translation initiation at the AUG codon of the main CFTR coding region in CFTRTRAD-139 and CFTR-1C/-1A transcripts. Exon(-1A), only present in CFTR-1C/-1A transcripts, encodes an AUG codon that is in-frame with the main CFTR open reading frame, the efficient translation of which produces a novel CFTR protein isoform with a curtailed amino terminus. As the expression of this CFTR transcript parallels the spatial and temporal distribution of the cAMP-activated whole-cell current density in normal and diseased hearts, we suggest that CFTR-1C/-1A provides the molecular basis for the cardiac cAMP-activated chloride channel. Our findings provide further insight into the complex nature of in vivo CFTR expression, to which multiple mRNA transcripts, protein isoforms, and post-transcriptional regulatory mechanisms are now added.
Resumo:
Immunizing pregnant women with a malaria vaccine is one approach to protecting the mother and her offspring from malaria infection. However, specific maternal Abs generated in response to vaccination and transferred to the fetus may interfere with the infant's ability to respond to the same vaccine. Using a murine model of malaria, we examined the effect of maternal 19-kDa C-terminal region of merozoite surface protein-1 (MSP1(19)) and Plasmodium yoelii Abs on the pups' ability to respond to immunization with MSP1(19). Maternal MSPI,g-specific Abs but not A yoelii-specific Abs inhibited Ab production following MSP1(19) immunization in 2-wk-old pups. This inhibition was correlated with the amount of maternal MSP1(19) Ab present in the pup at the time of immunization and was due to fewer specific B cells. Passively acquired Ab most likely inhibited the development of an Ab response by blocking access to critical B cell epitopes. If a neonate's ability to respond to MSP1(19) vaccination depends on the level of maternal Abs present at the time of vaccination, it may be necessary to delay immunization until Abs specific for the vaccinating Ag have decreased.
Resumo:
Sperm ultrastructure is examined and described for the actinocyclidid nudibranchs Actinocyclus verrucosus, Hallaxa iju and Hallaxa indecora. Although general characteristics were consistent with previously described heterobranch observations, present investigations revealed ultrastructural synapomorphies for the family based on the morphology of the terminal region of the spermatozoon. In actinocyclidids, the axonemal microtubules penetrate for some distance beyond the annulus, and the annular accessory body elongates to completely seal the terminal region. Chromodoris also has an annular accessory body that completely seals the axoneme and terminal region, but it does not extend far beyond the annulus, and it is possible that these states were derived independently. Cytochemical staining confirmed that there was no glycogen present in the posterior region of the sperm for H. indecora or Chromodoris kuniei. However, representatives of other chromodoridid genera (Noumea, Risbecia) have an axoneme that penetrates through the entire annular complex, after which it is sheathed by a glycogen deposit. Similarities in the acrosomal complex support the proposed sister group relationship between the Actinocyclidae and Chromodorididae.
Resumo:
The mammalian long-chain acyl-CoA thioesterase, the enzyme that catalyses the hydrolysis of acyl-CoAs to free fatty acids, contains two fused 4HBT (4-hydroxybenzoyl-CoA thioesterase) motifs. The C-terminal domain of the mouse long-chain acyl-CoA thioesterase (Acot7) has been expressed in bacteria and crystallized. The crystals were obtained by vapour diffusion using PEG 2000 MME as precipitant at pH 7.0 and 290 K. The crystals have the symmetry of space group R32 ( unit-cell parameters a = b = 136.83, c = 99.82 angstrom, gamma = 120 degrees). Two molecules are expected in the asymmetric unit. The crystals diffract to 2.4 angstrom resolution using the laboratory X-ray source and are suitable for crystal structure determination.
Resumo:
The RKKEE cluster of charged residues located within the cytoplasmic helix of the bacterial mechanosensitive channel, MscL, is essential for the channel function. The structure of MscL determined by x-ray crystallography and electron paramagnetic resonance spectroscopy has revealed discrepancies toward the C-terminus suggesting that the structure of the C-terminal helical bundle differs depending on the pH of the cytoplasm. In this study we examined the effect of pH as well as charge reversal and residue substitution within the RKKEE cluster on the mechanosensitivity of Escherichia coli MscL reconstituted into liposomes using the patch-clamp technique. Protonation of either positively or negatively charged residues within the cluster, achieved by changing the experimental pH or residue substitution within the RKKEE cluster, significantly increased the free energy of activation for the MscL channel due to an increase in activation pressure. Our data suggest that the orientation of the C-terminal helices relative to the aqueous medium is pH dependent, indicating that the RKKEE cluster functions as a proton sensor by adjusting the channel sensitivity to membrane tension in a pH-dependent fashion. A possible implication of our results for the physiology of bacterial cells is briefly discussed.
Resumo:
Background There is limited information regarding the clinical utility of amino-terminal pro-B-type natriuretic pepticle (NT-proBNP) for the detection of left ventricular (LV) dysfunction in the community. We evaluated predictors of circulating NT-proBNP levels and determined the utility of NT-proBNP to detect systolic and diastolic LV dysfunction in older adults. Methods. A population-based sample of 1229 older adults (mean age 69.4 years, 50.1% women) underwent echocardiographic assessment of cardiac structure and function and measurement of circulating NT-proBNP levels. Results Predictors of NT-proBNP included age, female sex, body mass index, and cardiorenal parameters (diastolic dysfunction [DID] severity; LV mass and left atrial volume; right ventricular overload; decreasing ejection fraction [EF] and creatinine clearance). The performance of NT-proBNP to detect any degree of LV dysfunction, including mild DID, was poor (area under the curve 0.56-0.66). In contrast, the performance of NT-proBNP for the detection of EF 0.90 regardless of age and sex; history of hypertension, diabetes, coronary artery disease; or body mass category. The ability of NT-proBNP to detect EF
Resumo:
The c-Jun N-terminal kinases (JNKs) are members of a larger group of serine/ threonine (Ser/Thr) protein kinases from the mitogen-activated protein kinase family. JNKs were originally identified as stress-activated protein kinases in the livers of cycloheximide-challenged rats. Their subsequent purification, cloning, and naming as JNKs have emphasized their ability to phosphorylate and activate the transcription factor c-Jun. Studies of c-Jun and related transcription factor substrates have provided clues about both the preferred substrate phosphorylation sequences and additional docking domains recognized by JNK There are now more than 50 proteins shown to be substrates for JNK These include a range of nuclear substrates, including transcription factors and nuclear hormone receptors, heterogeneous nuclear ribonucleoprotein K and the Pol I-specific transcription factor TIF-IA, which regulates ribosome synthesis. Many nonnuclear substrates have also been characterized, and these are involved in protein degradation (e.g., the E3 ligase Itch), signal transduction (e.g., adaptor and scaffold proteins and protein kinases), apoptotic cell death (e.g., mitochondrial Bcl2 family members), and cell movement (e.g., paxillin, DCX, microtubule-associated proteins, the stathmin family member SCG10, and the intermediate filament protein keratin 8). The range of JNK actions in the cell is therefore likely to be complex. Further characterization of the substrates of JNK should provide clearer explanations of the intracellular actions of the JNKs and may allow new avenues for targeting the JNK pathways with therapeutic agents downstream of JNK itself.