30 resultados para cocreation systemic archetypes
Resumo:
Apomorphine is a dopamine receptor agonist that was recently licensed for the treatment of erectile dysfunction. However, although sexual activity can be stressful, there has been little investigation into whether treatments for erectile dysfunction affect stress responses. We have examined whether a single dose of apomorphine, sufficient to produce penile erections (50 mug/kg, i.a.), can alter basal or stress-induced plasma ACTH levels, or activity of central pathways thought to control the hypothalamic-pituitary-adrenal axis in rats. An immune challenge (interleukin-1beta, 1 mug/kg, i.a.) was used as a physical stressor while sound stress (100 dB white noise, 30 min) was used as a psychological stressor. Intravascular administration of apomorphine had no effect on basal ACTH levels but did substantially increase the number of Fos-positive amygdala and nucleus tractus solitarius catecholamine cells. Administration of apomorphine prior to immune challenge augmented the normal ACTH response to this stressor at 90 min and there was a corresponding increase in the number of Fos-positive paraventricular nucleus corticotropin-releasing factor cells, paraventricular nucleus oxytocin cells and nucleus tractus solitarius catecholamine cells. However, apomorphine treatment did not alter ACTH or Fos responses to sound stress. These data suggest that erection-inducing levels of apomorphine interfere with hypothalamic-pituitary-adrenal axis inhibitory feedback mechanisms in response to a physical stressor, but have no effect on the response to a psychological stressor. Consequently, it is likely that apomorphine acts on a hypothalamic-pituitary-adrenal axis control pathway that is unique to physical stressors. A candidate for this site of action is the nucleus tractus solitarius catecholamine cell population and, in particular, A2 noradrenergic neurons. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Systemic infection activates the hypothalamic-pituitary-adrenal (HPA) axis, and brainstem catecholamine cells have been shown to contribute to this response. However, recent work also suggests an important role for the central amygdala (CeA). Because direct connections between the CeA and the hypothalamic apex of the HPA axis are minimal, the present study investigated whether the bed nucleus of the stria terminalis (BNST) might act as a relay between them. This was done by using an animal model of acute systemic infection involving intravascular delivery of the proinflammatory cytokine interleukin-1 (IL-1, 1 g/kg). Unilateral ibotenic acid lesions encompassing the ventral BNST significantly reduced both IL-1-induced increases in Fos immunoreactivity in corticotropin-releasing factor (CRF) cells of the hypothalamic paraventricular nucleus (PVN) and corresponding increases in adrenocorticotropic hormone (ACTH) secretion. Similar lesions had no effect on CRF cell responses to physical restraint, suggesting that the effects of BNST lesions were not due to a nonspecific effect on stress responses. In further studies, we examined the functional connections between PVN, BNST, and CeA by combining retrograde tracing with mapping of IL-1-induced increases in Fos in BNST and CeA cells. In the case of the BNST, these studies showed that systemic IL-1 administration recruits ventral BNST cells that project directly to the PVN. In the case of the CeA, the results obtained were consistent with an arrangement whereby lateral CeA cells recruited by systemic IL-1 could regulate the activity of medial CeA cells projecting directly to the BNST. In conclusion, the present findings are consistent with the hypothesis that the BNST acts as a relay between the CeA and PVN, thereby contributing to CeA modulation of hypophysiotropic CRF cell responses to systemic administration of IL-1.
Resumo:
Previous studies have shown that the medial prefrontal cortex can suppress the hypothalamic-pituitary-adrenal axis response to stress. However, this effect appears to vary with the type of stressor. Furthermore, the absence of direct projections between the medial prefrontal cortex and corticotropin-releasing factor cells at the apex of the hypothalamic-pituitary-adrenal axis suggest that other brain regions must act as a relay when this inhibitory mechanism is activated. In the present study, we first established that electrolytic lesions involving the prelimbic and infralimbic medial prefrontal cortex increased plasma adrenocorticotropic hormone levels seen in response to a physical stressor, the systemic delivery of interleukin-1beta. However, medial prefrontal cortex lesions did not alter plasma adrenocorticotropic hormone levels seen in response to a psychological stressor, noise. To identify brain regions that might mediate the effect of medial prefrontal cortex lesions on hypothalamic-pituitary-adrenal axis responses to systemic interleukin-1beta, we next mapped the effects of similar lesions on interleukin-1beta-induced Fos expression in regions previously shown to regulate the hypothalamic-pituitary-adrenal axis response to this stressor. It was found that medial prefrontal cortex lesions reduced the number of Fos-positive cells in the ventral aspect of the bed nucleus of the stria terminalis. However, the final experiment, which involved combining retrograde tracing with Fos immunolabelling, revealed that bed nucleus of the stria terminalis-projecting medial prefrontal cortex neurons were largely separate from medial prefrontal cortex neurons recruited by systemic interleukin-1beta, an outcome that is difficult to reconcile with a simple medial prefrontal cortex-bed nucleus of the stria terminalis-corticotropin-releasing factor cell control circuit.
Resumo:
Pathogen challenge can trigger an integrated set of signal transduction pathways, which ultimately leads to a state of high alert, otherwise known as systemic or induced resistance in tissue remote to the initial infection. Although large-scale gene expression during systemic acquired resistance, which is induced by salicylic acid or necrotizing pathogens has been previously reported using a bacterial pathogen, the nature of systemic defense responses triggered by an incompatible necrotrophic fungal pathogen is not known. We examined transcriptional changes that occur during systemic defense responses in Arabidopsis plants inoculated with the incompatible fungal pathogen Alternaria brassicicola. Substantial changes (2.00-fold and statistically significant) were demonstrated in distal tissue of inoculated plants for 35 genes (25 up-regulated and 10 down-regulated), and expression of a selected subset of systemically expressed genes was confirmed using real-time quantitative polymerase chain reaction. Genes with altered expression in distal tissue included those with putative functions in cellular housekeeping, indicating that plants modify these vital processes to facilitate a coordinated response to pathogen attack. Transcriptional up-regulation of genes encoding enzymes functioning in the beta-oxidation pathway of fatty acids was particularly interesting. Transcriptional up-regulation was also observed for genes involved in cell wall synthesis and modification and genes putatively involved in signal transduction. The results of this study, therefore, confirm the notion that distal tissue of a pathogen-challenged plant has a heightened preparedness for subsequent pathogen attacks.
Resumo:
For most complex emergent technologies, product-market success depends on efficient linkages between changing lead innovators within the R&D process. In this paper, our unit of analysis is a complex high technology product and the system of alliance linkages formed to progress a product through R&D milestones. We present a model and evidence for advancing our understanding of how achieving early-to-market returns depends on systemic absorptive capacity. This systemic absorptive capacity is the cumulative efficiency in the use of absorptive capacity to link changing lead innovators across successive milestones in R&D product development. We advance propositions of how systemic absorptive capacity can explain performance differences between rival product development systems competing for early-to-market returns with similar products through accelerating speed to market, cost and quality advantages. These explanations are contrasted with the conclusions of previous studies that have focused on absorptive capacity of single firms or single alliances in RD.
Resumo:
Background: Periodontitis has been associated with a number of systemic diseases such as atherosclerosis, coronary heart diseases, and respiratory diseases. This study aimed to determine whether there is a significant difference in the prevalence of systemic diseases (a) in patients referred for periodontal care compared to the general practice population, (b) in patients attending a public hospital and private practices, (c) in patients attending public and private periodontal practices, and (d) among patients with periodontitis of varying severity. Methods: Charts of 1000 adult patients were selected from four clinics (University of Queensland (UQ) School of Dentistry Admissions Clinic, UQ School of Dentistry Periodontics Clinic, Private Periodontal Practice, and Private General Dental Practice). The prevalence of medical conditions was evaluated using validated self-reported health questionnaires. The periodontal condition was assessed from the most recent relevant radiographs in the files. Results: Periodontal patients had a higher prevalence of systemic diseases compared to the general practice population. Public patients had a greater prevalence of systemic diseases compared to patients in private practice for both general practice and periodontal patients. In patients with advanced periodontitis, bronchitis, hepatitis and rheumatoid arthritis were most prevalent. Patients with periodontitis also took more medications and were more likely to suffer from multiple conditions compared to the general dental population. Conclusions: Patients attending public dental facilities have an increased prevalence of systemic disease compared to those attending private practices. Furthermore periodontal patients have a greater prevalence of disease compared to general practice patients. Patients with moderate or advanced periodontitis show an increase in the prevalence of some systemic diseases previously reported to be risk factors for periodontal disease.
Resumo:
Using Fos immunolabelling as a marker of neuronal activation, we investigated the role of the parabrachial nucleus in generating central neuronal responses to the systemic administration of the proinflarnmatory cytokine interleukin-1beta (1 mug/kg, i.a.). Relative to intact animals, parabrachial nucleus lesions significantly reduced the number of Fos-positive cells observed in the central amygdala (CeA), the bed nucleus of the stria terminalis (BNST), and the ventrolateral medulla (VLM) after systemic interleukin-1beta. In a subsequent experiment in which animals received parabrachial-directed deposits of a retrograde tracer, it was found that many neurons located in the nucleus tractus solitarius (NTS) and the VLM neurons were both retrogradely labelled and Fos-positive after interleukin-1beta administration. These results suggest that the parabrachial nucleus plays a critical role in interleukin-1beta-induced Fos expression in CeA, BNST and VLM neurons and that neurons of the NTS and VLM may serve to trigger or at least influence changes in parabrachial nucleus activity that follows systemic interleukin-1beta administration. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The intestinal absorption of the essential trace element iron and its mobilization from storage sites in the body are controlled by systemic signals that reflect tissue iron requirements. Recent advances have indicated that the liver-derived peptide hepcidin plays a central role in this process by repressing iron release from intestinal enterocytes, macrophages and other body cells. When iron requirements are increased, hepcidin levels decline and more iron enters the plasma. It has been proposed that the level of circulating diferric transferrin, which reflects tissue iron levels, acts as a signal to alter hepcidin expression. In the liver, the proteins HFE, transferrin receptor 2 and hemojuvelin may be involved in mediating this signal as disruption of each of these molecules decreases hepcidin expression. Patients carrying mutations in these molecules or in hepcidin itself develop systemic iron loading (or hemochromatosis) due to their inability to down regulate iron absorption. Hepcidin is also responsible for the decreased plasma iron or hypoferremia that accompanies inflammation and various chronic diseases as its expression is stimulated by pro-inflammatory cytokines such as interleukin 6. The mechanisms underlying the regulation of hepcidin expression and how it acts on cells to control iron release are key areas of ongoing research.
Resumo:
In opiate addicts or patients receiving morphine treatment, it has been reported that the immune system is often compromised. The mechanisms responsible for the adverse effects of opioids on responses to infection are not clear but it is possible that central and/or peripheral opioid receptors may be important. We have utilised an experimental immune challenge model in rats, the systemic administration of the human pro-inflammatory cytokine interleukin-1 beta (IL-1 beta) to study the effects of selectively blocking peripheral opioid receptors only (using naloxone methiodide) or after blocking both central and peripheral opioid receptors (using naloxone). Pre-treatment with naloxone methiodide decreased (15%) IL-1 beta-induced Fos-immunoreactivity (Fos-IR) in medial parvocellular paraventricular nucleus (mPVN) corticotropin-releasing hormone (CRH) neurons but increased responses in the ventrolateral medulla (VLM) C1 (65%) and nucleus tractus solitarius (NTS) A2 (110%) catecholamine cell groups and area postrema (136%). However no effect of blocking peripheral opioid receptors was detected in the central nucleus of the amygdala (CeA) or dorsal bed nucleus of the stria terminalis (BNST). We next determined the effect of blocking both central and peripheral opioid receptors with naloxone and, when compared to the naloxone methiodide pre-treated group, a further 60% decrease in Fos-IR mPVN CRH neurons induced by IL-1 beta was detected, which was attributed to block of central opioid receptors. Similar comparisons also detected decreases in Fos-IR neurons induced by IL-1 beta in the VLM A1, VLM C1 and NTS A2 catecholamine cell groups, area postrema, and parabrachial nucleus. In contrast, pre-treatment with naloxone increased Fos-IR neurons in CeA (98%) and dorsal BNST (72%). These results provide novel evidence that endogenous opioids can influence central neural responses to systemic IL-1 beta and also suggest that the differential patterns of activation may arise because of actions at central and/or peripheral opioid receptors that might be important in regulating behavioural, hypothalamic-pituitary-adrenal axis and sympathetic nervous system responses during an immune challenge. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The mechanisms responsible for the immunosuppression associated with sepsis or some chronic blood infections remain poorly understood. Here we show that infection with a malaria parasite (Plasmodium berghei) or simple systemic exposure to bacterial or viral Toll-like receptor ligands inhibited cross-priming. Reduced cross-priming was a consequence of downregulation of cross-presentation by activated dendritic cells due to systemic activation that did not otherwise globally inhibit T cell proliferation. Although activated dendritic cells retained their capacity to present viral antigens via the endogenous major histocompatibility complex class I processing pathway, antiviral responses were greatly impaired in mice exposed to Toll-like receptor ligands. This is consistent with a key function for cross-presentation in antiviral immunity and helps explain the immunosuppressive effects of systemic infection. Moreover, inhibition of cross-presentation was overcome by injection of dendritic cells bearing antigen, which provides a new strategy for generating immunity during immunosuppressive blood infections.
Resumo:
Copper and iron metabolism intersect in mammals. Copper deficiency simultaneously leads to decreased iron levels in some tissues and iron deficiency anemia, whereas it results in iron overload in other tissues such as the intestine and liver. The copper requirement of the multicopper ferroxidases hephaestin and ceruloplasmin likely explains this link between copper and iron homeostasis in mammals. We investigated the effect of in vivo and in vitro copper deficiency on hephaestin (Heph) expression and activity. C57BL/6J mice were separated into 2 groups on the day of parturition. One group was fed a copper-deficient diet and another was fed a control diet for 6 wk. Copper-deficient mice had significantly lower hephaestin and ceruloplasmin (~50% of controls) ferroxidase activity. Liver hepcidin expression was significantly downregulated by copper deficiency (~60% of controls), and enterocyte mRNA and protein levels of ferroportin1 were increased to 2.5 and 10 times, respectively, relative to controls, by copper deficiency, indicating a systemic iron deficiency in the copper-deficient mice. Interestingly, hephaestin protein levels were significantly decreased to ~40% of control, suggesting that decreased enterocyte copper content leads to decreased hephaestin synthesis and/or stability. We also examined the effect of copper deficiency on hephaestin in vitro in the HT29 cell line and found dramatically decreased hephaestin synthesis and activity. Both in vivo and in vitro studies indicate that copper is required for the proper processing and/or stability of hephaestin.
Resumo:
Objective This study aims to understand the pathophysiology of anaphylaxis in Dirofflaria immitis-sensitised cats by analysing objective physiological and haematological measurements after challenge. Design Nineteen healthy D immitis-naive cats were sensitised using weekly injections of aluminium hydroxide-adjuvanted D immitis antigen, administered subcutaneously over 6 weeks. After sensitisation, cats (n = 16) were anaesthetised and challenged with intravenous D immitis antigen. A control group (n = 3) was sham-challenged using intravenous sterile 0.9% saline. Systolic blood pressure (measured non-invasively/indirectly), respiratory rate, degree of dyspnoea, blood 0, saturation, expired CO2, and heart rate and were measured immediately before and at 10 to 15 min intervals after challenge until terminal apnoea occurred or euthanasia at 140 mins post-challenge. Blood was collected for complete blood count immediately before and at 10, 20 and 35 mins after challenge. Clinical observations were recorded as they occurred. Results Antigen-challenged cats were divided into two groups: acute (apnoea occurred within 25 mins of challenge) and subacute (breathing at 25 mins after challenge). In both groups, the degree of dyspnoea increased and blood O-2 saturation and blood pressure decreased. Respiratory rate increased in the subacute group. Expired CO2 decreased in both Ag-challenged and control groups. Haematocrit increased in the subacute group. Neutrophil count decreased in the acute group and platelet count decreased in the subacute group. Eosinophil count decreased in the subacute and control groups. Sustained dyspnoea and gastrointestinal signs were the most common clinical manifestations of anaphylaxis in the antigen-challenged cats. Conclusions Intravenous challenge with D immitis antigen in sensitised cats results in dyspnoea, hypoxaemia and systemic hypotension accompanied by haemoconcentration.
Resumo:
Systemic lupus erythematosus (SLE) is characterised by the production of autoantibodies against ubiquitous antigens, especially nuclear components. Evidence makes it clear that the development of these autoantibodies is an antigen-driven process and that immune complexes involving DNA-containing antigens play a key role in the disease process. In rodents, DNase I is the major endonuclease present in saliva, urine and plasma, where it catalyses the hydrolysis of DNA, and impaired DNase function has been implicated in the pathogenesis of SLE. In this study we have evaluated the effects of transgenic overexpression of murine DNase I endonucleases in vivo in a mouse model of lupus. We generated transgenic mice having T-cells that express either wild-type DNase I (wt. DNase I) or a mutant DNase I ( ash. DNase I), engineered for three new properties - resistance to inhibition by G-actin, resistance to inhibition by physiological saline and hyperactivity compared to wild type. By crossing these transgenic mice with a murine strain that develops SLE we found that, compared to control nontransgenic littermates or wt. DNase I transgenic mice, the ash. DNase I mutant provided significant protection from the development of anti-single-stranded DNA and anti-histone antibodies, but not of renal disease. In summary, this is the first study in vivo to directly test the effects of long-term increased expression of DNase I on the development of SLE. Our results are in line with previous reports on the possible clinical benefits of recombinant DNase I treatment in SLE, and extend them further to the use of engineered DNase I variants with increased activity and resistance to physiological inhibitors.
Resumo:
Systemic inflammation is known to affect drug disposition in the liver. This study sought to relate and quantitate changes in hepatic pharmacokinetics of propranolol with changes in hepatic architecture and physiology in adjuvant-treated rats. Transmission electron microscopy was used to assess morphological changes in mitochondria and lysosomes of adjuvant-treated rat livers. The disposition of propranolol was assessed in the perfused rat liver using the multiple indicator dilution technique. Hepatic extraction and mean transit time were determined from outflow-concentration profiles using a nonparametric method. Kinetic parameters were derived from a two-phase physiologically based organ pharmacokinetic model. Possible relationships were then explored between the changes in hepatic drug disposition and cytochrome P-450 activity and iron concentration. Adjuvant treatment induced the appearance of mitochondrial inclusions/tubularization and irregularly shaped lysosomes in rat livers. Livers from adjuvant-treated rats had (relative to normal) significantly higher alpha(1)-acid glycoprotein (orosomucoid) and iron tissue concentrations but lower cytochrome P-450 content. The hepatic extraction, metabolism, and ion trapping of propranolol were significantly impaired in adjuvant-treated rats and could be correlated with altered iron store and cytochrome P-450 activity. It is concluded that adjuvant-induced systemic inflammation alters hepatocellular morphology and biochemistry and consequently influences hepatic disposition of propranolol.