38 resultados para chromosome breakage
Resumo:
Distal spinal muscular atrophy is a heterogeneous group of neuromuscular disorders caused by progressive anterior born cell degeneration and characterized by progressive motor weakness and muscular atrophy, predominantly in the distal parts of the limbs. Here we report on chronic autosomal recessive distal spinal muscular atrophy in a large, inbred family with onset at various ages. Because this condition had some of the same clinical features as spinal muscular atrophy with respiratory distress, we tested the disease gene for linkage to chromosome 11q and mapped the disease locus to chromosome 11q13 in the genetic interval that included the spinal muscular atrophy with respiratory distress gene (D11S1889-D11S1321, Z(max) = 4.59 at theta = 0 at locus D11S4136). The sequencing of IGHMBP2, the human homologue of the mouse neuromuscular degeneration gene (nmd) that accounts for spinal muscular atrophy with respiratory distress, failed to detect any mutation in our chronic distal spinal muscular atrophy patients, suggesting that spinal muscular atrophy with respiratory distress and chronic distal spinal muscular atrophy are caused by distinct genes located in the so-me chromosomal region. In addition, the high intrafamilial variability in age at onset raises the question of whether nonallelic modifying genes could be involved in chronic distal spinal muscular atrophy.
Resumo:
CD4-CD8 ratio is an important diagnostic measure of immune system functioning. In particular, CD4-CD8 ratio predicts the time taken for progression of HIV infection to acquired immune deficiency syndrome (AIDS) and the long-term survival of AIDS patients. To map genes that regulate differences between healthy individuals in CD4-CD8 ratio, we typed 757 highly polymorphic microsatellite markers at an average spacing of similar to5 cM across the genome in 405 pairs of dizygotic twins at ages 12, 14 and 16. We used multipoint variance components linkage analysis to test for linkage between marker loci and CD4-CD8 ratio at each age. We found suggestive evidence of linkage on chromosome 11p in 12-year-old twins (LOD=2.55, P=0.00031) and even stronger evidence of linkage in the same region at age 14 (LOD 3.51, P=0.00003). Possible candidate genes include CD5 and CD6, which encode cell membrane proteins involved in the positive selection of thymocytes. We also found suggestive evidence of linkage at other areas of the genome including regions on chromosomes 1, 3, 4, 5, 6, 12, 13, 15, 17 and 22.
Resumo:
Platelet count is a highly heritable trait with genetic factors responsible for around 80% of the phenotypic variance. We measured platelet count longitudinally in 327 monozygotic and 418 dizygotic twin pairs at 12, 14 and 16 years of age. We also performed a genome-wide linkage scan of these twins and their families in an attempt to localize QTLs that influenced variation in platelet concentrations. Suggestive linkage was observed on chromosome 19q13.13-19q13.31 at 12 (LOD=2.12, P=0.0009), 14 (LOD=2.23, P=0.0007) and 16 (LOD=1.01, P=0.016) years of age and multivariate analysis of counts at all three ages increased the LOD to 2.59 (P=0.0003). A possible candidate in this region is the gene for glycoprotein VI, a receptor involved in platelet aggregation. Smaller linkage peaks were also seen at 2p, 5p, 5q, 10p and 15q. There was little evidence for linkage to the chromosomal regions containing the genes for thrombopoietin (3q27) and the thrombopoietin receptor (1q34), suggesting that polymorphisms in these genes do not contribute substantially to variation in platelet count between healthy individuals.
Resumo:
We have rated eye color on a 3-point scale (1=blue/grey, 2=hazel/green, 3=brown) in 502 twin families and carried out a 5-10 cM genome scan (400-757 markers). We analyzed eye color as a threshold trait and performed multipoint sib pair linkage analysis using variance components analysis in Mx. A lod of 19.2 was found at the marker D15S1002, less than 1 cM from OCA2, which has been previously implicated in eye color variation. We estimate that 74% of variance in eye color liability is due to this QTL and a further 18% due to polygenic effects. However, a large shoulder on this peak suggests that other loci affecting eye color may be telomeric of OCA2 and inflating the QTL estimate. No other peaks reached genome-wide significance, although lods >2 were seen on 5p and 14q and lods >1 were additionally seen on chromosomes 2, 3, 6, 7, 8, 9, 17 and 18. Most of these secondary peaks were reduced or eliminated when we repeated the scan as a two locus analysis with the 15q linkage included, although this does not necessarily exclude them as false positives. We also estimated the interaction between the 15q QTL and the other marker locus but there was only minor evidence for additive x additive epistasis. Elaborating the analysis to the full two-locus model including non-additive main effects and interactions did not strengthen the evidence for epistasis. We conclude that most variation in eye color in Europeans is due to polymorphism in OCA2 but that there may be modifiers at several other loci.
Resumo:
Background: Eosinophils are granulocytic white blood cells implicated in asthma and atopic disease. The degree of eosinophilia in the blood of patients with asthma correlates with the severity of asthmatic symptoms. Quantitative trait loci (QTL) linkage analysis of eosinophil count may be a more powerful strategy of mapping genes involved in asthma than linkage analysis using affected relative pairs. 1 Objective: To identify QTLs responsible for variation in eosinophil count in adolescent twins. Methods: We measured eosinophil count longitudinally in 738 pairs of twins at 12, 14, and 16 years of age. We typed 757 highly polymorphic microsatellite markers at an average spacing of similar to5 centimorgans across the genome. We then used multipoint variance components linkage analysis to test for linkage between marker loci and eosinophil concentrations at each age across the genome. Results: We found highly significant linkage on chromosome 2q33 in 12-year-old twins (logarithm of the odds = 4.6; P = .000002) and suggestive evidence of linkage in the same region in 14-year-olds (logarithm of the odds = 1.0; P = .016). We also found suggestive evidence of linkage at other areas of the genome, including regions on chromosomes 2, 3, 4, 8, 9, 11, 12, 17, 20, and 22. Conclusion: A QTL for eosinophil count is present on chromosome 2q33. This QTL might represent a gene involved in asthma pathophysiology.
Resumo:
The best accepted method for design of autogenous and semi-autogenous (AG/SAG) mills is to carry out pilot scale test work using a 1.8 m diameter by 0.6 m long pilot scale test mill. The load in such a mill typically contains 250,000-450,000 particles larger than 6 mm, allowing correct representation of more than 90% of the charge in Discrete Element Method (DEM) simulations. Most AG/SAG mills use discharge grate slots which are 15 mm or more in width. The mass in each size fraction usually decreases rapidly below grate size. This scale of DEM model is now within the possible range of standard workstations running an efficient DEM code. This paper describes various ways of extracting collision data front the DEM model and translating it into breakage estimates. Account is taken of the different breakage mechanisms (impact and abrasion) and of the specific impact histories of the particles in order to assess the breakage rates for various size fractions in the mills. At some future time, the integration of smoothed particle hydrodynamics with DEM will allow for the inclusion of slurry within the pilot mill simulation. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
DNA Microarray is a powerful tool to measure the level of a mixed population of nucleic acids at one time, which has great impact in many aspects of life sciences research. In order to distinguish nucleic acids with very similar composition by hybridization, it is necessary to design microarray probes with high specificities and sensitivities. Highly specific probes correspond to probes having unique DNA sequences; whereas highly sensitive probes correspond to those with melting temperature within a desired range and having no secondary structure. The selection of these probes from a set of functional DNA sequences (exons) constitutes a computationally expensive discrete non-linear search problem. We delegate the search task to a simple yet effective Evolution Strategy algorithm. The computational efficiency is also greatly improved by making use of an available bioinformatics tool.
Resumo:
Computer-aided tomography has been used for many years to provide significant information about the internal properties of an object, particularly in the medical fraternity. By reconstructing one-dimensional (ID) X-ray images, 2D cross-sections and 3D renders can provide a wealth of information about an object's internal structure. An extension of the methodology is reported here to enable the characterization of a model agglomerate structure. It is demonstrated that methods based on X-ray microtomography offer considerable potential in the validation and utilization of distinct element method simulations also examined.
Resumo:
In the area of dry particle breakage, Discrete Element Method (DEM) simulations have been widely used to analyse the sensitivity of various physical parameters to the behaviour of agglomerates during breakage. This paper looks at the effect of agglomerate shape and structure on the mechanisms and extent of breakage of dry agglomerates under compressive load using DEM simulations. In the simulations, a spherical-shaped agglomerate produced within the DEM code is compared with an irregularly shaped agglomerate, whose structure is that of an actual granule that was characterised with X-ray microtomography (muCT). Both agglomerates have identical particle size distribution, coordination number and surface energy values, with only the agglomerate shape and structure differing between the two. The work here details the breakage behaviour with a number of traditional DEM output parameters (i.e., contact/cluster distributions) with showing vastly different behaviour between the two agglomerates. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Bacterial artificial chromosome (BAC) libraries have been widely used in different aspects of genome research. In this paper we report the construction of the first mungbean (Vigna radiata L. Wilczek) BAC libraries. These BAC clones were obtained from two ligations and represent an estimated 3.5 genome equivalents. This correlated well with the screening of nine random single-copy restriction fragment length polymorphism probes, which detected on average three BACs each. These mungbean clones were successfully used in the development of two PCR-based markers linked closely with a major locus conditioning bruchid (Callosobruchus chinesis) resistance. These markers will be invaluable in facilitating the introgression of bruchid resistance into breeding programmes as well as the further characterisation of the resistance locus.
Resumo:
Several linkage studies across multiple population groups provide convergent support for a susceptibility locus for schizophrenia - and, more recently, for bipolar disorder - on chromosome 6q13-q26. We genotyped 192 European-ancestry and African American (AA) pedigrees with schizophrenia from samples that previously showed linkage evidence to 6q13-q26, focusing on the MOXD1-STX7-TRARs gene cluster at 6q23.2, which contains a number of prime candidate genes for schizophrenia. Thirty-one screening single-nucleotide polymorphisms (SNPs) were selected, providing a minimum coverage of at least 1 SNP/20 kb. The association observed with rs4305745 (P = .0014) within the TRAR4 (trace amine receptor 4) gene remained significant after correction for multiple testing. Evidence for association was proportionally stronger in the smaller AA sample. We performed database searches and sequenced genomic DNA in a 30-proband subsample to obtain a high-density map of 23 SNPs spanning 21.6 kb of this gene. Single-SNP analyses and also haplotype analyses revealed that rs4305745 and/or two other polymorphisms in perfect linkage disequilibrium (LD) with rs4305745 appear to be the most likely variants underlying the association of the TRAR4 region with schizophrenia. Comparative genomic analyses further revealed that rs4305745 and/or the associated polymorphisms in complete LD with rs4305745 could potentially affect gene expression. Moreover, RT-PCR studies of various human tissues, including brain, confirm that TRAR4 is preferentially expressed in those brain regions that have been implicated in the pathophysiology of schizophrenia. These data provide strong preliminary evidence that TRAR4 is a candidate gene for schizophrenia; replication is currently being attempted in additional clinical samples.