29 resultados para backward warping
Resumo:
Large-eddy simulation is used to predict heat transfer in the separated and reattached flow regions downstream of a backward-facing step. Simulations were carried out at a Reynolds number of 28 000 (based on the step height and the upstream centreline velocity) with a channel expansion ratio of 1.25. The Prandtl number was 0.71. Two subgrid-scale models were tested, namely the dynamic eddy-viscosity, eddy-diffusivity model and the dynamic mixed model. Both models showed good overall agreement with available experimental data. The simulations indicated that the peak in heat-transfer coefficient occurs slightly upstream of the mean reattachment location, in agreement with experimental data. The results of these simulations have been analysed to discover the mechanisms that cause this phenomenon. The peak in heat-transfer coefficient shows a direct correlation with the peak in wall shear-stress fluctuations. It is conjectured that the peak in these fluctuations is caused by an impingement mechanism, in which large eddies, originating in the shear layer, impact the wall just upstream of the mean reattachment location. These eddies cause a 'downwash', which increases the local heat-transfer coefficient by bringing cold fluid from above the shear layer towards the wall.
Resumo:
We have used the DSMC method to determine contamination (impingement of atmospheric molecules) and the aerodynamic forces on a cold satellite when a protective “purge gas” is ejected from a sting protruding ahead of the satellite. Forward ejection of the purge gas provides the greatest protection for a given mass of purge gas and the aerodynamic drag can be significantly reduced, thus compensating for the backward reaction from the forward ejection. If the purge gas is ejected backward from the sting (towards the satellite) the ejection provides thrust and the net retarding force can be reduced to zero. Contamination can be reduced and the mass of purging gas is less than the mass of conventional rocket propellant required to maintain the orbit of an unprotected satellite.
Resumo:
Cerebral responses to alternating periods of a control task and a selective letter generation paradigm were investigated with functional Magnetic Resonance Imaging (fMRI). Subjects selectively generated letters from four designated sets of six letters from the English language alphabet, with the instruction that they were not to produce letters in alphabetical order either forward or backward, repeat or alternate letters. Performance during this condition was compared with that of a control condition in which subjects recited the same letters in alphabetical order. Analyses revealed significant and extensive foci of activation in a number of cerebral regions including mid-dorsolateral frontal cortex, inferior frontal gyrus, precuneus, supramarginal gyrus, and cerebellum during the selective letter generation condition. These findings are discussed with respect to recent positron emission tomography (PET) and fMRI studies of verbal working memory and encoding/retrieval in episodic memory.
Resumo:
Modulational instability in optical Bragg gratings with a quadratic nonlinearity is studied. The electric field in such structures consists of forward and backward propagating components at the fundamental frequency and its second harmonic. Analytic continuous wave (CW) solutions are obtained, and the intricate complexity of their stability, due to the large number of equations and number of free parameters, is revealed. The stability boundaries are rich in structures and often cannot be described by a simple relationship. In most cases, the CW solutions are unstable. However, stable regions are found in the nonlinear Schrodinger equation limit, and also when the grating strength for the second harmonic is stronger than that of the first harmonic. Stable CW solutions usually require a low intensity. The analysis is confirmed by directly simulating the governing equations. The stable regions found have possible applications in second-harmonic generation and dark solitons, while the unstable regions maybe useful in the generation of ultrafast pulse trains at relatively low intensities. [S1063-651X(99)03005-6].
Resumo:
Background We tested whether behaviours such as discarding obvious fat on meat, cessation of smoking, avoidance of passive smoking, habitual use of reduced fat milk, prudent consumption of alcohol and regular but moderate physical exercise are associated with a reduction of cardiovascular risk. Methods This was a population-based case-control study done in Perth, Western Australia. The cases (n = 336) were men aged 27-64 years with a first-ever acute myocardial infarction (AMI) during the period 1992-1993, and who survived at least 28 days. The controls (n = 735) were participants in a population-based survey of cardiovascular risk factors conducted during May-November 1994. Both groups completed the same questionnaire and the data were analysed with multiple logistic regression using backward elimination technique. Results Among men aged 27-64 years simple measures such as participation in non-vigorous exercise (odds ratio [OR] = 0.5, 95% CI : 0.4-0.7), and avoidance of added salt (OR = 0.6, 95% CI : 0.4-0.9) are associated with significant and Important protection from AMI. Conclusion After 25 years of falling mortality in Australia, lifestyles can still be significantly improved to reduce heart disease even further.
Resumo:
Recent research (Kuhl, 1991) has suggested that the internal structure of vowel categories is graded in terms of stimulus goodness. It has been proposed that a best instance stimulus reflects a central point or prototype, which effectively renders within-category members perceptually more similar. Discrimination experiments suggest a nonlinear relationship between acoustic and perceptual space near category centers (Iverson & Kuhl, 1995b). This phenomenon has been described as the perceptual magnet effect. The present study investigated the presence of the perceptual magnet effect in five Australian vowel categories. Australian English speakers identified, rated, and discriminated between a pool of 32 vowel stimuli that varied in F1 and F2 values. The results from Experiments 1 and 2 showed that subjects were able to judge the quality and identity of each stimulus and that a general grading of stimulus quality was reported. This was not symmetrical, and the subjects' responses varied considerably. In Experiment 3, closer control of the methodology in the discrimination task and of contextual factors influencing the test materials was exercised. Despite this, evidence of the warping of perceptual space in discrimination data was not found. In general, these results do not provide support for the existence of the perceptual magnet effect, and explanations for this finding are discussed.
Resumo:
In a recent paper [16], one of us identified all of the quasi-stationary distributions for a non-explosive, evanescent birth-death process for which absorption is certain, and established conditions for the existence of the corresponding limiting conditional distributions. Our purpose is to extend these results in a number of directions. We shall consider separately two cases depending on whether or not the process is evanescent. In the former case we shall relax the condition that absorption is certain. Furthermore, we shall allow for the possibility that the minimal process might be explosive, so that the transition rates alone will not necessarily determine the birth-death process uniquely. Although we shall be concerned mainly with the minimal process, our most general results hold for any birth-death process whose transition probabilities satisfy both the backward and the forward Kolmogorov differential equations.
Resumo:
We show experimentally that under certain conditions the chaotic intensity dynamics of an optically pumped NH3 bidirectional ring laser could be well described in terms of Shil'nikov homoclinic orbits and chaos. We found that the mechanism that resulted in this kind of dynamics of the laser is the competition between effects caused by the mode interaction between the forward and the backward modes of the laser and by the intrinsic single-mode dynamics of the interacting modes. (C) 1997 Optical Society of America.
Resumo:
In this paper we discuss implicit Taylor methods for stiff Ito stochastic differential equations. Based on the relationship between Ito stochastic integrals and backward stochastic integrals, we introduce three implicit Taylor methods: the implicit Euler-Taylor method with strong order 0.5, the implicit Milstein-Taylor method with strong order 1.0 and the implicit Taylor method with strong order 1.5. The mean-square stability properties of the implicit Euler-Taylor and Milstein-Taylor methods are much better than those of the corresponding semi-implicit Euler and Milstein methods and these two implicit methods can be used to solve stochastic differential equations which are stiff in both the deterministic and the stochastic components. Numerical results are reported to show the convergence properties and the stability properties of these three implicit Taylor methods. The stability analysis and numerical results show that the implicit Euler-Taylor and Milstein-Taylor methods are very promising methods for stiff stochastic differential equations.
Resumo:
Background: Adrenaline is localized to specific regions of the central nervous system (CNS), but its role therein is unclear because of a lack of suitable pharmacologic agents. Ideally, a chemical is required that crosses the blood-brain barrier, potently inhibits the adrenaline-synthesizing enzyme PNMT, and does not affect other catecholamine processes. Currently available PNMT inhibitors do not meet these criteria. We aim to produce potent, selective, and CNS-active PNMT inhibitors by structure-based design methods. The first step is the structure determination of PNMT. Results: We have solved the crystal structure of human PNMT complexed with a cofactor product and a submicromolar inhibitor at a resolution of 2.4 Angstrom. The structure reveals a highly decorated methyltransferase fold, with an active site protected from solvent by an extensive cover formed from several discrete structural motifs. The structure of PNMT shows that the inhibitor interacts with the enzyme in a different mode from the (modeled) substrate noradrenaline. Specifically, the position and orientation of the amines is not equivalent. Conclusions: An unexpected finding is that the structure of PNMT provides independent evidence of both backward evolution and fold recruitment in the evolution of a complex enzyme from a simple fold. The proposed evolutionary pathway implies that adrenaline, the product of PNMT catalysis, is a relative newcomer in the catecholamine family. The PNMT structure reported here enables the design of potent and selective inhibitors with which to characterize the role of adrenaline in the CNS. Such chemical probes could potentially be useful as novel therapeutics.
Resumo:
Direct numerical simulation (DNS) of turbulent flow around a rotating cylinder with two backward-facing steps axisymmetrically mounted in the circumferential direction was performed and compared with DNS of plane backward-facing step flow (PBSF) of Le [J. Fluid Mech. 330, 349 (1997)]. The original motivation of this work stemmed from the efforts to design a simple device which can generate flows of high turbulence intensity at low cost for corrosion researchers. It turned out that the current flow shows flow structures quite similar to those of PBSF downstream of the step, even though configurations of the two flows are totally different from one another. The stepped cylinder appears to be a cost-effective tool in the generation of flow structures similar to those of PBSF. (C) 2002 American Institute of Physics.
Resumo:
Direct numerical simulation has been carried out for turbulent flow set up by a rotating cylinder with two backward-facing steps axisymmetrically mounted in the circumferential direction. This flow geometry creates a qualitatively similar flow pattern as observed near, a sudden, pipe expansion or a plane backward-facing step, characterized by flow separation and reattachment. A region of intense turbulence intensity and high wall-shear-stress fluctuations is formed in,the recirculating I region downstream of the step, where high mass-transfer capacity was also experimentally observed. Since, corrosion is frequently mass-transfer., controlled, our findings, put forward this apparatus as useful tool for future corrosion research.