18 resultados para acute antibody mediated rejection
Resumo:
Background. Activated dendritic cells (DC) initiate immune responses by presenting antigen, including alloantigen from tissue grafts, to T lymphocytes. The potential to deplete or inactivate differentiated-activated DC during allogeneic transplantation represents a new approach to immunosuppression. Methods. The authors investigated the potential of the monoclonal antibody CMRF-44, which has specificity for a DC-associated differentiation-activation antigen, to induce complement-mediated lysis of activated human DC. Peripheral blood mononuclear cells (PBMC), or purified DC preparations, were cultured overnight to activate endogenous DC, resulting in the expression of CNW-44 antigen and CD83. These were then treated with CMRF-44 and complement. Depletion of activated DC was monitored by flow cytometry. Results. Eighty-nine percent of activated (CD83(+)) DC in cultured PBMC were depleted by treatment with CMRF-44 and autologous serum (AS) (complement source; mean percentage of CD83(+)-CD14(-)-CD19(-) cells=0.06%; cf 0.50% for heat-inactivated AS controls, P
Resumo:
Three distinct isolates of Candida albicans were used to establish systemic and oral infections in inbred mice that are genetically resistant or susceptible to tissue damage. Patterns of infection differed significantly between both yeasts and mouse strains. Systemic infection conferred significant protection against re-challenge with the homologous, but not the heterologous yeast; however, the protective effect was more evident in the tissue-susceptible CBA/CaH mice than in the resistant BALB/c strain. In contrast, oral infection induced protection against both homologous and heterologous oral challenge, although this was significant only in the CBA/CaH mice. CBA/CaH mice produced antibodies of both IgG1 and IgG2a subclasses, whereas BALB/c mice produced predominantly IgG1. Western blotting demonstrated considerable differences between epitopes recognised by serum antibodies from mice of both strains after immunisation with each of the three yeasts. Thus, different strains of yeast show considerable specificity in antibody responses elicited by either systemic or oral infection. (c) 2005 Elsevier SAS. All rights reserved.
Resumo:
To address the issue of melanocortin-1 receptor (MC1R) expression in non-melanocytic cells, we have quantitatively evaluated the relative expression levels of both MC1R mRNA and protein in a subset of different cell types. Using semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) at high cycle numbers, we detected MC1R mRNA in all cell types examined, including human embryonic kidney-293 (HEK 293) cells, a cell type widely used as a negative control in melanocortin expression studies. Quantitative real-time PCR revealed the highest levels of MC1R transcripts were in melanocytic cells, whereas the keratinocyte and fibroblast cell cultures examined had only a low level of expression, similar to that of HEK 293 cells. Antibody mediated detection of MC1R protein in membrane extracts demonstrated exogenous receptor in MC1R transfected cell lines, as well as endogenous MC1R in melanoma cells. However, radioligand binding procedures were required to detect MC1R protein of normal human melanocytes and no surface expression of MC1R was detected in any of the non-melanocytic cells examined. This was consistent with their low level of mRNA, and suggests that, if present, the levels of surface receptor are significantly lower than that in melanocytes. The capacity of such limited levels of MC1R protein to influence non-melanocytic skin cell biology would likely be severely compromised. Indeed, the MC1R agonist [NIe(4), D-Phe(7)] alpha-melanocyte stimulating hormone (NDP-MSH) was unable to elevate intracellular cyclic adenosine monophosphate (cAMP) levels in the keratinocyte and fibroblast cells examined, whereas a robust increase was elicited in melanocytes. Although there are a variety of cell types with detectable MC1R mRNA, the expression of physiologically significant levels of the receptor may be more restricted than the current literature indicates, and within epidermal tissue may be limited to the melanocyte
Resumo:
Experimental models of orthotopic liver transplantation (OLT) have shown that the very early events post-OLT are critical in distinguishing immunogenic and tolerogenic reactions. In rodents, increased leukocyte apoptosis and cytokine expression have been demonstrated in tolerogenic strain combinations. Information from human OLT recipients is less abundant. The aim of this study was to determine the amount of early leukocyte activation and apoptosis following human OLT, and to correlate this with subsequent rejection status. Peripheral blood mononuclear cells (PBMC) were isolated from 76 patients undergoing OLT - on the day prior, 5 hrs after reperfusion (day 0), and 18-24 hrs post-OLT (day 1). The mean level of apoptotic PBMCs on post OLT day 1 was higher than healthy recipients (0.9% +/- 0.2 vs. 0.2% +/- 0.1, p = 0.013). Apoptosis was greater in nonrejecting (NR) (1.1% +/- 0.3) compared with acutely-rejecting (R) (0.3% +/- 0.1, p = 0.021) patients. On day 1, PBMC from NR patients had increased expression of IFN-gamma (p = 0.006), IL-10 (p = 0.016), and CD40 ligand (p = 0.02) compared with R. Donor cell chimerism on day 1 did not differ between the groups indicating that this was unlikely to account for increased PBMC apoptosis in the NR group. Interestingly, the level of chimerism on day 0 was significantly higher in NR (3.8% +/- 0.6) compared with R (1.2% +/- 0.4, p = 0.004) patients and there was a close correlation between chimerism on day 0 and cytokine expression on day 1. These results imply that similar mechanisms are occurring in the human liver to promote graft acceptance as in the experimental models of liver transplantation and suggest that strategies that promote liver transplant acceptance in rodents might be applicable to humans.
Resumo:
Although there is good evidence that immunity to the blood stages of malaria parasites can be mediated by different effector components of the adaptive immune system, target antigens for a principal component, effector CD4(+) T cells, have never been defined. We generated CD4+ T cell lines to fractions of native antigens from the blood stages of the rodent parasite, Plasmodium yoelii, and identified fraction-specific T cells that had a Th1 phenotype (producing IL-2, IFN-gamma, and tumor necrosis factor-a, but not IL-4, after antigenic stimulation). These T cells could inhibit parasite growth in recipient severe combined immunodeficient mice. N-terminal sequencing of the fraction showed identity with hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRT). Recombinant HGXPRT from the human malaria parasite, Plasmodium falciparum, activated the T cells in vitro, and immunization of normal mice with recombinant HGXPRT reduced parasite growth rates in all mice after challenge.
Resumo:
Subunit vaccines, based on one or more epitopes, offer advantages over whole vaccines in terms of safety but are less antigenic. We investigated whether fusion of the cytokine interleukin-2 (IL-2) to influenza-derived subunit antigens could increase their antigenicity. The fusion of IL-2 to the subunit antigens increased their antigenicity in vitro. Encapsulation of the subunit antigen in liposomes also increased its antigenicity in vitro, yet encapsulation of the subunit IL-2 fusion did not. The use of anti-IL-2 receptor beta (IL-2Rbeta) antibody to block the receptor subunit on macrophages suggested that the adjuvancy exerted by IL-2 in our in vitro system is due to, at least in part, a previously unreported IL-2Rbeta-mediated antigen uptake mechanism.
Resumo:
Purpose. The aim of this study was to report the influence of hepatitis C virus (HCV) genotype and rejection episodes on the outcome of orthotopic liver transplantation (OLT), hepatitis recurrence, and progression to graft cirrhosis after OLT. Methods. Fifty-three patients who all had undergone OLT for end-stage liver cirrhosis were selected for this study. Hepatitis C genotype was determined. Recurrent hepatitis and rejection were diagnosed based on elevated liver function tests and a liver biopsy. Results. The patients were followed up for a mean of 51.9 +/- 34.3 months. The cumulative survival rate was no different in OLT for hepatitis C and OLT for all other liver diseases. After OLT, serum HCV RNA was detected in 93%. Histological recurrence occurred in 85% of all patients. The 1-, 3-, and 5-year recurrence rates were 48%, 77%, and 85%, respectively. Of the 41 patients with recurrent hepatitis C, 4 (10%) had cirrhosis, 18 (44%) had hepatitis with fibrosis, and 91 (46%) had hepatitis without fibrosis at the end of follow-up. A total of 32% of the patients were infected by HCV genotype 1b and 68% by other HCV genotypes. The recurrence rates were significantly higher in patients infected with genotype 1b than in those with other genotypes (p = 0.04). Twenty of 48 patients (42%) experienced acute rejection. There was a strong association between the number of rejection episodes and the incidence of HCV-related cirrhosis (p < 0.01). Conclusion. Our findings showed the genotype 1b to result in a higher recurrence rate after OLT. On the other hand, rejection episodes were associated with a more rapid progression to graft cirrhosis.
Resumo:
Indirect evidence indicates that morphine-3-glucuronide (M3G) may contribute significantly to the neuro-excitatory side effects (myoclonus and allodynia) of large-dose systemic morphine. To gain insight into the mechanism underlying M3G' s excitatory behaviors, We used fluo-3 fluorescence digital imaging techniques to assess the acute effects of M3G (5-500 muM) on the cytosolic calcium concentration ([Ca2+](CYT)) in cultured embryonic hippocampal neurones. Acute (3 min) exposure of neurones to M3G evoked [Ca2+](CYT) transients that were typically either (a) transient oscillatory responses characterized by a rapid increase in [Ca2+](CYT) oscillation amplitude that was sustained for at least similar to30 s or (b) a sustained increase in [Ca2+](CYT) that slowly recovered to baseline. Naloxone-pretreatment decreased the proportion of M3G-responsive neurones by 10%-25%, implicating a predominantly non-opioidergic mechanism. Although the naloxone-insensitive M3G-induced increases in [Ca2+](CYT) were completely blocked by N-methyl-D-aspartic acid (NMDA) antagonists and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (alphaamino-3-hydroxy-5-methyl-4-isoxazolepropiordc acid/ kainate antagonist), CNQX did not block the large increase in [Ca2+](CYT) evoked by NMDA (as expected), confirming that N13G indirectly activates the NMDA receptor. Additionally, tetrodotoxin (Na+ channel blocker), baclofen (gamma-aminobutyric acid, agonist), MVIIC (P/Q-type calcium channel blocker), and nifedipine (L-type calcium channel blocker) all abolished M3G-induced increases in [Ca2+](CYT), suggesting that M3G may produce its neuro-excitatory effects by modulating neurotransmitter release. However, additional characterization is required.
Resumo:
The mitogen-activated protein ( MAP) kinases contribute to altered cell growth and function in a variety of disease states. However, their role in the endothelial complications of diabetes mellitus remains unclear. Human endothelial cells were exposed for 72 h to 5 mM ( control) or 25 mM ( high) glucose or 5 mM glucose plus 20 mM mannitol ( osmotic control). The roles of p38 and p42/44 MAP kinases in the high glucose-induced growth effects were determined by assessment of phosphorylated MAP kinases and their downstream activators by Western blot and by pharmacological inhibition of these MAP kinases. Results were expressed as a percentage ( means +/- SE) of control. High glucose increased the activity of total and phosphorylated p38 MAP kinase ( P < 0.001) and p42/44 MAP kinase ( P < 0.001). Coexposure of p38 MAP kinase blocker with high glucose reversed the antiproliferative but not the hypertrophic effects associated with high-glucose conditions. Transforming growth factor (TGF)-beta1 increased the levels of phosphorylated p38 MAP kinase, and p38 MAP kinase blockade reversed the antiproliferative effects of this cytokine. The high glucose-induced increase in phosphorylated p38 MAP kinase was reversed in the presence of TGF-beta1 neutralizing antibody. Although hyperosmolarity also induced antiproliferation (P < 0.0001) and cell hypertrophy (P < 0.05), there was no change in p38 activity, and therefore inhibition of p38 MAP kinase had no influence on these growth responses. Blockade of p42/44 MAP kinase had no effect on the changes in endothelial cell growth induced by either high glucose or hyperosmolarity. High glucose increased p42/44 and p38 MAP kinase activity in human endothelial cells, but only p38 MAP kinase mediated the antiproliferative growth response through the effects of autocrine TGF-beta1. High glucose-induced endothelial cell hypertrophy was independent of activation of the MAP kinases studied. In addition, these effects were independent of any increase in osmolarity associated with high-glucose exposure.
Resumo:
Objective. To improve quality of in-hospital care of patients with acute coronary syndromes using a multifaceted quality improvement program. Design. Prospective, before and after study of the effects of quality improvement interventions between October 2000 and August 2002. Quality of care of patients admitted between 1 October 2000 and 16 April 2001 (baseline) was compared with that of those admitted between 15 February 2002 and 31 August 2002 (post-intervention). Setting. Three teaching hospitals in Brisbane, Australia. Study participants. Consecutive patients (n = 1594) admitted to hospital with acute coronary syndrome [mean age 68 years (SD 14 years); 65% males]. Interventions. Clinical guidelines, reminder tools, and educational interventions; 6-monthly performance feedback; pharmacist-mediated patient education program; and facilitation of multidisciplinary review of work practices. Main outcome measures. Changes in key quality indicators relating to timing of electrocardiogram (ECG) and thrombolysis in emergency departments, serum lipid measurement, prescription of adjunctive drugs, and secondary prevention. Results. Comparing post-intervention with baseline patients, increases occurred in the proportions of eligible patients: (i) undergoing timely ECG (70% versus 61%; P = 0.04); (ii) prescribed angiotensin-converting enzyme inhibitors (70% versus 60%; P = 0.002) and lipid-lowering agents (77% versus 68%; P = 0.005); (iii) receiving cardiac counselling in hospital (57% versus 48%; P = 0.009); and (iv) referred to cardiac rehabilitation (17% versus 8%; P < 0.001). Conclusions. Multifaceted approaches can improve care processes for patients hospitalized with acute coronary syndromes. Care processes under direct clinician control changed more quickly than those reliant on complex system factors. Identifying and overcoming organizational impediments to quality improvement deserves greater attention.
Resumo:
Although immune responses leading to rejection of transplantable tumours have been well studied, requirements for epithelial tumour rejection are unclear. Here, we use human growth hormone (hGH) expressed in epithelial cells (skin keratinocytes) as a model neo-self antigen to investigate the consequences of antigen presentation from epithelial cells. Mice transgenic for hGH driven from the keratin 14 promoter express hGH in skin keratinocytes. This hGH-transgenic skin is not rejected by syngeneic non-transgenic recipients, although an antibody response to hGH develops in grafted animals. Systemic immunization of graft recipients with hGH peptides, or local administration of stimulatory anti-CD40 antibody, induces temporary macroscopic graft inflammation, and an obvious dermal infiltrate of inflammatory cells, but not graft rejection. These results suggest that a neo-self antigen expressed in somatic cells in skin can induce an immune response that can be enhanced further by induction of specific immunity systemically or non-specific immunity locally. However, immune responses do not always lead to rejection, despite induction of local inflammatory changes. Therefore, in vitro immune responses and in vivo delayed type hypersensitivity are not surrogate markers for immune responses effective against epithelial cells expressing neoantigens.
Resumo:
The Eph receptor tyrosine kinases and their membrane-bound ephrin ligands form a unique cell-cell contact-mediated system for controlling cell localization and organization. Their high expression in a wide variety of human tumors indicates a role in tumor progression, and relatively low Eph and ephrin levels in normal tissues make these proteins potential targets for anticancer therapies. The monoclonal antibody IIIA4, previously used to isolate EphA3, binds with subnanomolar affinity to a conformation-specific epitope within the ephrin-binding domain that is closely adjacent to the low-affinity ephrin-A5 heterotetramerization site. We show that similar to ephrin-A5, preclustered IIIA4 effectively triggers EphA3 activation, contraction of the cytoskeleton, and cell rounding. BIAcore analysis, immunoblot, and confocal microscopy of wild-type and mutant EphA3 with compromised ephrin-A5 or IIIA4-binding capacities indicate that IIIA4 binding triggers an EphA3 conformation which is permissive for the assembly of EphA3/ephrin-A5-type signaling clusters. Furthermore, unclustered IIIA4 and ephrin-A5 Fc applied in combination initiate greatly enhanced EphA3 signaling. Radiometal conjugates of ephrin-A5 and IIIA4 retain their affinity, and in mouse xenografts localize to, and are internalized rapidly into EphA3-positive, human tumors. These findings show the biological importance of EphA3/ ephrin-A5 interactions and that ephrin-A5 and IIIA4 have great potential as tumor targeting reagents.
Resumo:
Monoclonal antibodies (Mab) are heterotetramers consisting of an equimolar ratio of heavy chain (HC) and light chain (LC) polypeptides. Accordingly, most recombinant Mab expression systems utilize an equimolar ratio of heavy chain (he) to light chain (lc) genes encoded on either one or two plasmids. However, there is no evidence to suggest that this gene ratio is optimal for stable or transient production of recombinant Mab. In this study we have determined the optimal ratio of hc:lc genes for production of a recombinant IgG(4) Mab, cB72.3, by Chinese hamster ovary (CHO) cells using both empirical and mathematical modeling approaches. Polyethyleneimine-mediated transient expression of cB72.3 at varying ratios of hc:lc genes encoded on separate plasmids yielded an optimal Mab titer at a hc:lc gene ratio of 3:2; a conclusion confirmed by separate mathematical modeling of the Mab folding and assembly process using transient expression data. On the basis of this information, we hypothesized that utilization of he genes at low hc:lc gene ratios is more efficient. To confirm this, cB72.3 Mab was transiently produced by CHO cells at constant he and varying lc gene dose. Under these conditions, Mab yield was increased with a concomitant increase in lc gene dose. To determine if the above findings also apply to stably transfected CHO cells producing recombinant Mab, we compared the intra- and extracellular ratios of HC and LC polypeptides for three GS-CHO cells lines transfected with a 1:1 ratio of hc:lc genes and selected for stable expression of the same recombinant Mab, cB72.3. Intra- and extracellular HC:LC polypeptide ratios ranged from 1:2 to 1:5, less than that observed on transient expression of the same Mab in parental CHO cells using the same vector. In conclusion, our data suggest that the optimal ratio of hc:lc genes used for transient and stable expression of Mab differ. In the case of the latter, we infer that optimal Mab production by stably transfected cells represents a compromise between HC abundance limiting productivity and the requirement for excess LC to render Mab folding and assembly more efficient.
Resumo:
Aims: Previous immunohistochemical studies have shown that the post-translational formation of aldehyde-protein adducts may be an important process in the aetiology of alcohol-induced muscle disease. However, other studies have shown that in a variety of tissues, alcohol induces the formation of various other adduct species, including hybrid acetaldehyde-malondialdehyde-protein adducts and adducts with free radicals themselves, e.g. hydroxyethyl radical (HER)-protein adducts. Furthermore, acetaldehyde-protein adducts may be formed in reducing or non-reducing environments resulting in distinct molecular entities, each with unique features of stability and immunogenicity. Some in vitro studies have also suggested that unreduced adducts may be converted to reduced adducts in situ. Our objective was to test the hypothesis that in muscle a variety of different adduct species are formed after acute alcohol exposure and that unreduced adducts predominate. Methods: Rabbit polyclonal antibodies were raised against unreduced and reduced aldehydes and the HER-protein adducts. These were used to assay different adduct species in soleus (type I fibre-predominant) and plantaris (type II fibre-predominant) muscles and liver in four groups of rats administered acutely with either [A] saline (control); [B] cyanamide (an aldehyde dehydrogenase inhibitor); [C] ethanol; [D] cyanamide+ethanol. Results: Amounts of unreduced acetaldehyde and malondialdehyde adducts were increased in both muscles of alcohol-dosed rats. However there was no increase in the amounts of reduced acetaldehyde adducts, as detected by both the rabbit polyclonal antibody and the RT1.1 mouse monoclonal antibody. Furthermore, there was no detectable increase in malondialdehyde-acetaldehyde and HER-protein adducts. Similar results were obtained in the liver. Conclusions: Adducts formed in skeletal muscle and liver of rats exposed acutely to ethanol are mainly unreduced acetaldehyde and malondialdehyde species.