230 resultados para Wireless instrumentation system
Resumo:
The suitable use of an array antenna at the base station of a wireless communications system can result in improvement in the signal-to-interference ratio (SIR). In general, the SIR is a function of the direction of arrival of the desired signal and depends on the configuration of the array, the number of elements, and their spacing. In this paper, we consider a uniform linear array antenna and study the effect of varying the number of its elements and inter-element spacing on the SIR performance. (C) 2002 Wiley Periodicals, Inc.
Resumo:
A phased-array antenna with switched-beam elements used to combat interference in an indoor wireless communication system is described. The array uses I-bit phase shifters applied to its elements in order to point its main beam in a desired direction and internal switching of elements in order to form nulls towards interference. The array's capability of suppressing interference is verified by studying its radiation patterns and by performing interference-rejection experiments in an indoor multipath environment. (c) 2005 Wiley Periodicals, Inc.
Resumo:
In this paper the performance of a multiple input multiple output (MIMO) wireless communication system operating in an indoor environment, featuring both line of sight (LOS) and non-line of sight (NLOS) signal propagation, is assessed. In the model the scattering objects are assumed to be uniformly distributed in an area surrounding the transmitting and receiving array antennas. Mutual coupling effects in the arrays are treated in an exact manner. However interactions with scattering objects are taken into account via a single bounce approach. Computer simulations are carried out for the system capacity for varying inter-element spacing in the receiving array for assumed values of LOS/NLOS power fraction and signal to noise ratio (SNR).
Resumo:
We consider blind signal detection in an asynchronous code-division multiple-access (CDMA) system employing short spreading sequences in the presence of unknown multipath fading. This approach is capable of countering the presence of multiple-access interference (MAI) in CDMA fading channels. The proposed blind multiuser detector is based on an independent component analysis (ICA) to mitigate both MAI and noise. This algorithm has been utilised in blind source separation (BSS) of unknown sources from their mixtures. It can also be used for estimating the basis vectors of BSS. The aim is to include an ICA algorithm within a wireless receiver in order to reduce the level of interference in wideband systems. This blind multiuser detector requires no training sequence compared with the conventional multiuser detection receiver. The proposed ICA blind multiuser detector is made robust with respect to knowledge of signature waveforms and the timing of the user of interest. Several experiments are performed in order to verify the validity of the proposed ICA algorithm.
Resumo:
The equipment used to measure magnetic fields and, electric currents in residences is described. The instrumentation consisted of current transformers, magnetic field probes and locally designed and, built signal conditioning modules. The data acquisition system was capable of unattended recording for extended time periods. The complete system was calibrated to verify its response to known physical inputs. (C) 2003 ISA-The Instrumentation Automation Society.
Resumo:
The design of dual-band 2.45/5.2 GHz antenna for an acces point of a Wireless Local Area Network (LAN) is presented. The proposed antenna is formed by a Radial Line Slot Array (RLSA) operating at 2.4 GHz and a Microstrip patch working at 5.2 GHz, both featuring circular polarization. The design of this antenna system is accomplished using commercially available Finite Element software. High Frequency Structure Simulator (HFSS) of Ansoft and an in-house developed iteration procedure. The performance of the designed antenna is assessed in terms of return loss (RL), radiation pattern and polarization purity in the two frequency bands.
Resumo:
In most magnetic resonance imaging (MRI) systems, pulsed magnetic gradient fields induce eddy currents in the conducting structures of the superconducting magnet. The eddy currents induced in structures within the cryostat are particularly problematic as they are characterized by long time constants by virtue of the low resistivity of the conductors. This paper presents a three-dimensional (3-D) finite-difference time-domain (FDTD) scheme in cylindrical coordinates for eddy-current calculation in conductors. This model is intended to be part of a complete FDTD model of an MRI system including all RF and low-frequency field generating units and electrical models of the patient. The singularity apparent in the governing equations is removed by using a series expansion method and the conductor-air boundary condition is handled using a variant of the surface impedance concept. The numerical difficulty due to the asymmetry of Maxwell equations for low-frequency eddy-current problems is circumvented by taking advantage of the known penetration behavior of the eddy-current fields. A perfectly matched layer absorbing boundary condition in 3-D cylindrical coordinates is also incorporated. The numerical method has been verified against analytical solutions for simple cases. Finally, the algorithm is illustrated by modeling a pulsed field gradient coil system within an MRI magnet system. The results demonstrate that the proposed FDTD scheme can be used to calculate large-scale eddy-current problems in materials with high conductivity at low frequencies.
Resumo:
Interfaces designed according to ecological interface design (EID) display higher-order relations and properties of a work domain so that adaptive operator problem solving can be better supported under unanticipated system conditions. Previous empirical studies of EID have assumed that the raw data required to derive and communicate higher-order information would be available and reliable. The present research examines the relative advantages of an EID interface over a conventional piping-and-instrumentation diagram (PID) when instrumentation is maximally or only minimally adequate. Results show an interaction between interface and the adequacy of the instrumentation. Failure diagnosis performance with the EID interface with maximally adequate instrumentation is best overall. Performance with the EID interface drops more drastically from maximally to minimally adequate instrumentation than does performance with the PID interface, to the point where the EID interface with minimally adequate instrumentation supports nonsignificantly worse performance than does the equivalent PID interface. Actual or potential applications of this research include design of instrumentation and displays for complex industrial processes.
Resumo:
A mobile interactive online health system was used to conduct virtual ward rounds at a regional hospital which had no specialist paediatrician. The system was wireless, which allowed telepaediatric services to be delivered direct to the bedside. Between December 2004 and May 2005, 43 virtual ward rounds were coordinated between specialists based in Brisbane and local staff at the Gladstone Hospital. Eighty-six consultations were provided for 64 patients. The most common conditions included asthma (27%), chest infections (12%), gastroenteritis (10%) and urinary tract infections (10%). In the majority of cases, there were partial (67%) or complete changes (11%) in the clinical management of patients. Specialist services were offered by a team of 13 clinicians at the Royal Children's Hospital: 10 general paediatricians, two physiotherapists and one registered nurse. Feedback from all consultants involved in the service and local staff in Gladstone was extremely positive. In 43 videoconference calls there were three technical problems, probably due to an intermittent mains power supply at the regional hospital. There appears to be potential for other rural and regional hospitals to adopt this model of service delivery.
Resumo:
Study Design. Prospective clinical case series. Objective. To evaluate the clinical outcome of anterior endoscopic instrumention for scoliosis using the SRS-24 questionnaire and to examine how these scores change over a 2-year follow-up period. Summary of Background Data. Anterior endoscopic instrumentation correction has several advantages compared with open procedures. However, the clinical results of this technique using a validated outcome measure have rarely been reported in the literature. Methods. A total of 83 consecutive patients underwent endoscopic anterior instrumentation performed at a single unit. Patients completed the SRS-24 questionnaire before surgery and at 3, 6, 12, and 24 months after surgery. The SRS-24 scores were compared between each of the follow-up intervals. Results. The pain, general self-image, and function from back condition domains improved after surgery (P < 0.05). Activity level significantly improved between 3 and 6 months, and both function domains improved between 6 and 12 months (P < 0.05). None of the domains increased significantly after 1 year. Conclusions. Endoscopic anterior instrumentation for scoliosis significantly improved pain, self-image, and function. The greatest improvement in function occurred between 6 and 12 months after surgery. The SRS-24 scores at 1 year from surgery may provide a good indicator of patient outcome in the long-term.