185 resultados para WATER AVAILABILITY
The N-15 natural abundance (delta N-15) of ecosystem samples reflects measures of water availability
Resumo:
We assembled a globally-derived data set for site-averaged foliar delta(15)N, the delta(15)N of whole surface mineral soil and corresponding site factors (mean annual rainfall and temperature, latitude, altitude and soil pH). The delta(15)N of whole soil was related to all of the site variables (including foliar delta(15)N) except altitude and, when regressed on latitude and rainfall, provided the best model of these data, accounting for 49% of the variation in whole soil delta(15)N. As single linear regressions, site-averaged foliar delta(15)N was more strongly related to rainfall than was whole soil delta(15)N. A smaller data set showed similar, negative correlations between whole soil delta(15)N, site-averaged foliar delta(15)N and soil moisture variations during a single growing season. The negative correlation between water availability (measured here by rainfall and temperature) and soil or plant delta(15)N fails at the landscape scale, where wet spots are delta(15)N-enriched relative to their drier surroundings. Here we present global and seasonal data, postulate a proximate mechanism for the overall relationship between water availability and ecosystem delta(15)N and, newly, a mechanism accounting for the highly delta(15)N-depleted values found in the foliage and soils of many wet/cold ecosystems. These hypotheses are complemented by documentation of the present gaps in knowledge, suggesting lines of research which will provide new insights into terrestrial N-cycling. Our conclusions are consistent with those of Austin and Vitousek (1998) that foliar (and soil) delta(15)N appear to be related to the residence time of whole ecosystem N.
Resumo:
Effects of soil water availability on transpiration efficiency (WUET), instantaneous water use efficiency (WUEi) and carbon isotope composition (delta(13)C) were investigated in 7-month-old plants of humid coastal (Gympie) and dry inland ( Hungry Hills) provenances of Eucalyptus cloeziana F. Muell. and in a dry inland provenance of E. argophloia Blakely (Chinchilla), supplied with 100 (W-100), 70 (W-70) and 50% (W-50) of their water requirements. At W-100, WUET of the three provenances were not significantly different but as available soil moisture decreased, E. argophloia produced greater biomass and demonstrated significantly higher WUET than either E. cloeziana provenance. Midday WUEi was not significantly affected by watering regime within each provenance but was lowest in E. argophloia. A decrease in soil water availability caused a consistent increase in delta(13)C values in all three provenances; however, delta(13)C values of E. argophloia in all three water regimes were significantly lower than those of E. cloeziana provenances, which did not differ significantly from each other. For all three provenances, delta(13)C was not correlated with WUEi but height and root collar diameter were negatively correlated to delta(13)C. There was little evidence of differences in delta(13)C, WUET and WUEi between E. cloeziana provenances but clear differences between E. cloeziana and E. argophloia. The high WUET, low WUEi and low delta(13)C for E. argophloia may have implications in the selection of Eucalyptus provenances for commercial forestry in low-rainfall regions.
Resumo:
Effects of soil water availability on seedling growth, dry matter production and allocation were determined for Gympie ( humid coastal) and Hungry Hills ( dry inland) provenances of Eucalyptus cloeziana F. Muell. and for E. argophloia Blakely ( dry inland) species. Seven-month-old seedlings were subjected to well-watered (100% field capacity, FC), moderate (70% FC) and severe (50% FC) soil water regimes in a glasshouse environment for 14 wk. There were significant differences in seedling growth, biomass production and allocation patterns between species. E. argophloia produced twice as much biomass at 100% FC, and more than three times as much at 70% and 50% FC than did either E. cloeziana provenance. Although the humid provenance of E. cloeziana had a greater leaf area at 100% FC conditions than did the dry provenance, total biomass production did not differ significantly. Both E. cloeziana provenances were highly sensitive to water deficits. E. argophloia allocated 10% more biomass to roots than did E. cloeziana. Allometric analyses indicated that relative biomass allocation patterns were significantly affected by genotype but not by soil water availability. These results have implications for taxon selection for cultivation in humid and subhumid regions.
Resumo:
The resource potential of shallow water tables for cropping systems has been investigated using the Australian sugar industry as a case study. Literature concerning shallow water table contributions to sugarcane crops has been summarised, and an assessment of required irrigation for water tables to depths of 2 m investigated using the SWIMv2.1 soil water balance model for three different soils. The study was undertaken because water availability is a major limitation for sugarcane and other crop production systems in Australia and knowledge on how best to incorporate upflow from water tables in irrigation scheduling is limited. Our results showed that for the three soils studied (representing a range of permeabilities as defined by near-saturated hydraulic conductivities), no irrigation would be required for static water tables within 1 m of the soil surface. Irrigation requirements when static water tables exceeded 1 m depth were dependent on the soil type and rooting characteristics (root depth and density). Our results also show that the near-saturated hydraulic conductivities are a better indicator of the ability of water tables below 1 m to supply sufficient upflow as opposed to soil textural classifications. We conclude that there is potential for reductions in irrigation and hence improvements in irrigation water use efficiency in areas where shallow water tables are a low salinity risk: either fresh, or the local hydrology results in net recharge. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Quantifying water losses in paddy fields assists estimation of water availability in rainfed lowland rice ecosystem. Little information is available on water balance in different toposequence positions of sloped rainfed lowland. Therefore, the aim of this work was to quantify percolation and the lateral water flow with special reference to the toposequential variation. Data used for the analysis was collected in Laos and northeast Thailand. Percolation and water tables were measured on a daily basis using a steel cylindrical tube with a lid and perforated PVC tubes, respectively. Percolation rate was determined using linear regression analysis of cumulative percolation. Assuming that the total amount of evaporation and transpiration was equivalent to potential evapotranspiration, the lateral water flow was estimated using the water balance equation. Separate perched water and groundwater tables were observed in paddy fields on coarse-textured soils. The percolation rate varied between 0 and 3 mm/day across locations, and the maximum water loss by lateral movement was more than 20 mm/day. Our results are in agreement with the previously reported findings, and the methodology of estimating water balance components appears reasonably acceptable. With regard to the toposequential variation, the higher the position in the topoesquence, the greater potential for water loss because of higher percolation and lateral flow rates.
Resumo:
To evaluate the long term sustainability of water withdrawals in the United States, a county level analysis of the availability of renewable water resources was conducted, and the magnitudes of human withdrawals from surface water and ground water sources and the stored water requirements during the warmest months of the year were evaluated. Estimates of growth in population and electricity generation were then used to estimate the change in withdrawals assuming that the rates of water use either remain at their current levels (the business as usual scenario) or that they exhibit improvements in efficiency at the same rate as observed over 1975 to 1995 (the improved efficiency scenario). The estimates show several areas, notably the Southwest and major metropolitan areas throughout the United States, as being likely to have significant new storage requirements with the business-as-usual scenario, under the condition of average water availability. These new requirements could be substantially eliminated under the improved efficiency scenario, thus indicating the importance of water use efficiency in meeting future requirements. The national assessment identified regions of potential water sustainability concern; these regions can be the subject of more targeted data collection and analyses in the future.
Resumo:
Antarctic bryophyte communities presently tolerate physiological extremes in water availability, surviving both desiccation and submergence events. We investigated the relative ability of three Antarctic moss species to tolerate physiological extremes in water availability and identified physiological, morphological, and biochemical characteristics that assist species performance under such conditions. Tolerance of desiccation and submergence was investigated using chlorophyll fluorescence during a series of field- and laboratory-based water stress events. Turf water retention and degree of natural habitat submergence were determined from gametophyte shoot size and density, and delta C-13 signatures, respectively. Finally, compounds likely to assist membrane structure and function during desiccation events (fatty acids and soluble carbohydrates) were determined. The results of this study show significant differences in the performance of the three study species under contrasting water stress events. The results indicate that the three study species occupy distinctly different ecological niches with respect to water relations, and provide a physiological explanation for present species distributions. The poor tolerance of submergence seen in Ceratodon purpureus helps explain its restriction to drier sites and conversely, the low tolerance of desiccation and high tolerance of submergence displayed by the endemic Grimmia antarctici is consistent with its restriction to wet habitats. Finally the flexible response observed for Bryum pseudotriquetrum is consistent with its co-occurrence with the other two species across the bryophyte habitat spectrum. The likely effects of future climate change induced shifts in water availability are discussed with respect to future community dynamics.
Resumo:
Quantifying water losses in paddy fields assists estimation of water availability in rainfed lowland rice ecosystem. There is, however, no definite method for determining the water losses, and little information is available on water balance in different toposequence positions of a sloped rainfed lowland. Therefore, the aim of this work was to quantify percolation and the lateral water flow with special reference to the toposequential variation. Data used for the analysis was collected in Laos and northeast Thailand. Percolation and water tables were measured on a daily basis. The percolator is a steel cylindrical tube with a lid to prevent water loss from evapotranspiration. The water table meter is a short PVC tube for determination of perched water table and a long PVC tube for groundwater table, and the side is perforated with 5-mm diameter holes at 20-mm distance. Percolation rate was determined using linear regression analysis of cumulative percolation. Assuming that the total amount of evaporation and transpiration was equivalent to potential evapotranspiration, the lateral water flow was estimated using the water balance equation. Our results are in agreement with the previously reported findings, and the methodology of estimating water balance components appears reasonably acceptable. With regard to the toposequential variation, the higher position in the topoesquence, the greater potential of the water losses because of higher percolation and lateral flow rates.
Resumo:
This paper examines the challenges of water supply in agriculture, with particular emphasis on requirements of field crops, including maize. It places the issue of water supply to agriculture in the context of increasing demands for water from alternatives users, declining quality water, pressure of increasing population, all of which are placing stresses on water availability at local, regional and national levels. The paper also examines existing freshwater resources and the potential impact of climate change on water supply and distribution and consequential impact on water stress incidence in various parts of the globe. It examines competition for water in both industrialized and developing countries, with particular emphasis on the impacts on agriculture and food supplies. The challenge of water use efficiency (WUE) in agriculture is explored with discussion of agronomic, economic and physiological WUE concepts, with specific reference to maize.
Resumo:
Tolerance of desiccation was examined in three species of moss, Grimmia antarctici Card., Ceratodon purpureus (Hedw.) Brid. and Bryum pseudotriquetrum (Hedw.) Gaertn., Meyer et Scherb. collected from two sites of contrasting water availability in the Windmill Islands, continental Antarctica. Physiological tolerance to desiccation was measured using chlorophyll fluorescence in plugs of moss during natural drying in the laboratory. Differences in relative water content, rate of drying and the response of photosynthesis to desiccation were observed among the three species and between sites. Of the three species studied, G. antarctici showed the lowest capacity to sustain photosynthetic processes during desiccation, B. pseudotriquetrum had an intermediate response and showed the greatest plasticity and C. purpureus showed the greatest capacity to sustain photosynthesis during desiccation. These results fit well with the known distribution of the three species with G. antarctici being limited to relatively wet sites, C. purpureus being common in the driest sites and B. pseudotriquetrum showing a wide distribution between these two extremes. Levels of soluble carbohydrates were also measured in these samples following desiccation and these indicate the presence of stachyose, an oligosaccharide known to be important in desiccation tolerance in seeds, in B. pseudotriquetrum. Both gross morphology and carbohydrate content are likely to contribute to differences in desiccation tolerance of the moss species. These results indicate that if the Casey region continues to dry out, as a result of local geological uplifting or global climate change, we would expect to see not only reductions in the moss community but also changes in community composition. G. antarctici is likely to become more limited in distribution as C. purpureus and B. pseudotriquetrum expand into drying areas.
Resumo:
1. Ice-volume forced glacial-interglacial cyclicity is the major cause of global climate variation within the late Quaternary period. Within the Australian region, this variation is expressed predominantly as oscillations in moisture availability. Glacial periods were substantially drier than today with restricted distribution of mesic plant communities, shallow or ephemeral water bodies and extensive aeolian dune activity. 2. Superimposed on this cyclicity in Australia is a trend towards drier and/or more variable climates within the last 350 000 years. This trend may have been initiated by changes in atmospheric and ocean circulation resulting from Australia's continued movement into the Southeast Asian region and involving the onset or intensification of the El Nino-Southern Oscillation system and a reduction in summer monsoon activity. 3. Increased biomass burning, stemming originally from increased climatic variability and later enhanced by activities of indigenous people, resulted in a more open and sclerophyllous vegetation, increased salinity and a further reduction in water availability. 4. Past records combined with recent observations suggest that the degree of environmental variability will increase and the drying trend will be enhanced in the foreseeable future, regardless of the extent or nature of human intervention.
Resumo:
The increased use of trickle or drip irrigation is seen as one way of helping to improve the sustainability of irrigation systems around the world. However, soil water and solute transport properties and soil profile characteristics are often not adequately incorporated in the design and management of trickle systems. In this paper, we describe results of a simulation study designed to highlight the impacts of soil properties on water and solute transport from buried trickle emitters. The analysis addresses the influence of soil hydraulic properties, soil layering, trickle discharge rate, irrigation frequency, and timing of nutrient application on wetting patterns and solute distribution. We show that (1) trickle irrigation can improve plant water availability in medium and low permeability fine-textured soils, providing that design and management are adapted to account for their soil hydraulic properties, (2) in highly permeable coarse-textured soils, water and nutrients move quickly downwards from the emitter, making it difficult to wet the near surface zone if emitters are buried too deep, and (3) changing the fertigation strategy for highly permeable coarse-textured soils to apply nutrients at the beginning of an irrigation cycle can maintain larger amounts of nutrient near to and above the emitter, thereby making them less susceptible to leaching losses. The results demonstrate the need to account for differences in soil hydraulic properties and solute transport when designing irrigation and fertigation management strategies. Failure to do this will result in inefficient systems and lost opportunities for reducing the negative environmental impacts of irrigation.