24 resultados para Three-dimensional printing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES We sought to determine whether assessment of left ventricular (LV) function with real-time (RT) three-dimensional echocardiography (3DE) could reduce the variation of sequential LV measurements and provide greater accuracy than two-dimensional echocardiography (2DE). BACKGROUND Real-time 3DE has become feasible as a standard clinical tool, but its accuracy for LV assessment has not been validated. METHODS Unselected patients (n = 50; 41 men; age, 64 +/- 8 years) presenting for evaluation of LV function were studied with 2DE and RT-3DE. Test-retest variation was performed by a complete restudy by a separate sonographer within 1 h without alteration of hemodynamics or therapy. Magnetic resonance imaging (MRI) images were obtained during a breath-hold, and measurements were made off-line. RESULTS The test-retest variation showed similar measurements for volumes but wider scatter of LV mass measurements with M-mode and 2DE than 3DE. The average MRI end-diastolic volume was 172 +/- 53 ml; LV volumes were underestimated by 2DE (mean difference, -54 +/- 33; p < 0.01) but only slightly by RT-3DE (-4 +/- 29; p = 0.31). Similarly, end-systolic volume by MRI (91 +/- 53 ml) was underestimated by 2DE (mean difference, -28 +/- 28; p < 0.01) and by RT-3DE (mean difference, -3 +/- 18; p = 0.23). Ejection fraction by MRI was similar by 2DE (p = 0.76) and RT-3DE (p = 0.74). Left ventricular mass (183 +/- 50 g) was overestimated by M-mode (mean difference, 68 +/- 86 g; p < 0.01) and 2DE (16 +/- 57; p = 0.04) but not RT-3DE (0 +/- 38 g; p = 0.94). There was good inter- and intra-observer correlation between RT-3DE by two sonographers for volumes, ejection fraction, and mass. CONCLUSIONS Real-time 3DE is a feasible approach to reduce test-retest variation of LV volume, ejection fraction, and mass measurements in follow-up LV assessment in daily practice. (C) 2004 by the American College of Cardiology Foundation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, a 3-dimensional phantom that can provide a comprehensive, accurate and complete measurement of the geometric distortion in MRI has been developed. In this paper, a scheme for characterizing the measured geometric distortion using the 3-D phantom is described. In the proposed scheme, a number of quantitative measures are developed and used to characterize the geometric distortion. These measures encompass the overall and spatial aspects of the geometric distortion. Two specific types of volume of interest, rectangular parallelepipeds (including cubes) and spheres are considered in the proposed scheme. As an illustration, characterization of the geometric distortion in a Siemens 1.5T Sonata MRI system using the proposed scheme is presented. As shown, the proposed scheme provides a comprehensive assessment of the geometric distortion. The scheme can be potentially used as a standard procedure for the assessment of geometric distortion in MRI. (C) 2004 American Association of Physicists in Medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of three dimensional effects on isochromatic birefringence is evaluated for planar flows by means of numerical simulation. Two fluid models are investigated in channel and abrupt contraction geometries. In practice, the flows are confined by viewing windows, which alter the stresses along the optical path. The observed optical properties differ therefore from their counterpart in an ideal two-dimensional flow. To investigate the influence of these effects, the stress optical rule and the differential propagation Mueller matrix are used. The material parameters are selected so that a retardation of multiple orders is achieved, as is typical for highly birefringent melts. Errors due to three dimensional effects are mainly found on the symmetry plane, and increase significantly with the flow rate. Increasing the geometric aspect ratio improve the accuracy provided that the error on the retardation is less than one order. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a theoretical analysis of three-dimensional (3D) matter-wave solitons and their stability properties in coupled atomic and molecular Bose-Einstein condensates (BECs). The soliton solutions to the mean-field equations are obtained in an approximate analytical form by means of a variational approach. We investigate soliton stability within the parameter space described by the atom-molecule conversion coupling, the atom-atom s-wave scattering, and the bare formation energy of the molecular species. In terms of ordinary optics, this is analogous to the process of sub- or second-harmonic generation in a quadratic nonlinear medium modified by a cubic nonlinearity, together with a phase mismatch term between the fields. While the possibility of formation of multidimensional spatiotemporal solitons in pure quadratic media has been theoretically demonstrated previously, here we extend this prediction to matter-wave interactions in BEC systems where higher-order nonlinear processes due to interparticle collisions are unavoidable and may not be neglected. The stability of the solitons predicted for repulsive atom-atom interactions is investigated by direct numerical simulations of the equations of motion in a full 3D lattice. Our analysis also leads to a possible technique for demonstrating the ground state of the Schrodinger-Newton and related equations that describe Bose-Einstein condensates with nonlocal interparticle forces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The convective instability of pore-fluid flow in inclined and fluid-saturated three-dimensional fault zones has been theoretically investigated in this paper. Due to the consideration of the inclined three-dimensional fault zone with any values of the inclined angle, it is impossible to use the conventional linear stability analysis method for deriving the critical condition (i.e., the critical Rayleigh number) which can be used to investigate the convective instability of the pore-fluid flow in an inclined three-dimensional fault zone system. To overcome this mathematical difficulty, a combination of the variable separation method and the integration elimination method has been used to derive the characteristic equation, which depends on the Rayleigh number and the inclined angle of the inclined three-dimensional fault zone. Using this characteristic equation, the critical Rayleigh number of the system can be numerically found as a function of the inclined angle of the three-dimensional fault zone. For a vertically oriented three-dimensional fault zone system, the critical Rayleigh number of the system can be explicitly derived from the characteristic equation. Comparison of the resulting critical Rayleigh number of the system with that previously derived in a vertically oriented three-dimensional fault zone has demonstrated that the characteristic equation of the Rayleigh number is correct and useful for investigating the convective instability of pore-fluid flow in the inclined three-dimensional fault zone system. The related numerical results from this investigation have indicated that: (1) the convective pore-fluid flow may take place in the inclined three-dimensional fault zone; (2) if the height of the fault zone is used as the characteristic length of the system, a decrease in the inclined angle of the inclined fault zone stabilizes the three-dimensional fundamental convective flow in the inclined three-dimensional fault zone system; (3) if the thickness of the stratum is used as the characteristic length of the system, a decrease in the inclined angle of the inclined fault zone destabilizes the three-dimensional fundamental convective flow in the inclined three-dimensional fault zone system; and that (4) the shape of the inclined three-dimensional fault zone may affect the convective instability of pore-fluid flow in the system. (C) 2004 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes recent advances made in computational modelling of the sugar cane liquid extraction process. The saturated fibro-porous material is rolled between circumferentially grooved rolls, which enhance frictional grip and provide a low-resistance path for liquid flow during the extraction process. Previously reported two-dimensional (2D) computational models, account for the large deformation of the porous material by solving the fully coupled governing fibre stress and fluid-flow equations using finite element techniques. While the 2D simulations provide much insight into the overarching cause-effect relationships, predictions of mechanical quantities such as roll separating force and particularly torque as a function of roll speed and degree of compression are not satisfactory for industrial use. It is considered that the unsatisfactory response in roll torque prediction may be due to the stress levels that exist between the groove tips and roots which have been largely neglected in the geometrically simplified 2D model. This paper gives results for both two- and three-dimensional finite element models and highlights their strengths and weaknesses in predicting key milling parameters. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: Left atrial (LA) volume (LAV) is a prognostically important biomarker for diastolic dysfunction, but its reproducibility on repeated testing is not well defined. LA assessment with 3-dimensional. (3D) echocardiography (3DE) has been validated against magnetic resonance imaging, and we sought to assess whether this was superior to existing measurements for sequential echocardiographic follow-up. Methods: Patients (n = 100; 81 men; age 56 +/- 14 years) presenting for LA evaluation were studied with M-mode (MM) echocardiography, 2-dimensional (2D) echocardiography, and 3DE. Test-retest variation was performed by a complete restudy by a separate sonographer within 1 hour without alteration of hemodynamics or therapy. In all, 20 patients were studied for interobserver and intraobserver variation. LAVs were calculated by using M-mode diameter and planimetered atrial area in the apical. 4-chamber view to calculate an assumed sphere, as were prolate ellipsoid, Simpson's biplane, and biplane area-length methods. All were compared with 3DE. Results: The average LAV was 72 +/- 27 mL by 3DE. There was significant underestimation of LAV by M-mode (35 +/- 20 mL, r = 0.66, P < .01). The 3DE and various 2D echocardiographic techniques were well correlated: LA planimetry (85 +/- 38 mL, r = 0.77, P < .01), prolate ellipsoid (73 +/- 36 mL, r = 0.73, P = .04), area-length (64 +/- 30 mL, r = 0.74, P < .01), and Simpson's biplane (69 +/- 31 mL, r = 0.78, P = .06). Test-retest variation for 3DE was most favorable (r = 0.98, P < .01), with the prolate ellipsoid method showing most variation. Interobserver agreement between measurements was best for 3DE (r = 0.99, P < .01), with M-mode the worst (r = 0.89, P < .01). Intraobserver results were similar to interobserver, the best correlation for 3DE (r = 0.99, P < .01), with LA planimetry the worst (r = 0.91, P < .01). Conclusions. The 2D measurements correlate closely with 3DE. Follow-up assessment in daily practice appears feasible and reliable with both 2D and 3D approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Control of the trunk is critical for locomotor efficiency. However, investigations of trunk muscle activity and three-dimensional lumbo-pelvic kinematics during walking and running remain scarce. Methods. Gait parameters and three-dimensional lumbo-pelvic kinematics were recorded in seven subjects. Electromyography recordings of abdominal and paraspinal muscles were made using fine-wire and surface electrodes as subjects walked on a treadmill at 1 and 2 ms(-1) and ran at 2, 3, 4 and 5 ms(-1). Findings. Kinematic data indicate that the amplitude but not timing of lumbo-pelvic motion changes with locomotor speed. Conversely, a change in locomotor mode is associated with temporal but not spatial adaptation in neuromotor strategy. That is, peak transverse plane lumbo-pelvic rotation occurs at foot strike during walking but prior to foot strike during running. Despite this temporal change, there is a strong correlation between the amplitude of transverse plane lumbo-pelvic rotation and stride length during walking and running. In addition, Jumbo-pelvic motion was asymmetrical during all locomotor tasks. Trunk muscle electromyography occurred biphasically in association with foot strike. Transversus abdominis was tonically active with biphasic modulation. Consistent with the kinematic data, electromyography activity of the abdominal muscles and the superficial fibres of multifidus increased with locomotor speed, and timing of peak activity of superficial multifidus and obliquus externus abdominis was modified in association with the temporal adaptation in lumbo-pelvic motion with changes in locomotor mode. Interpretation. These data provide evidence of the association between lumbo-pelvic motion and trunk muscle activity during locomotion at different speeds and modes. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During puberty, pregnancy, lactation and postlactation, breast tissue undergoes extensive remodelling and the disruption of these events can lead to cancer. In vitro studies of mammary tissue and its malignant transformation regularly employ mammary epithelial cells cultivated on matrigel or floating collagen rafts. In these cultures, mammary epithelial cells assemble into three-dimensional structures resembling in vivo acini. We present a novel technique for generating functional mammary constructs without the use of matrix substitutes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An approach to the qualitative analysis of quenched microstructures in three dimensions is presented and demonstrated on unmodified and Sr-modified Al-10% Si samples. The samples were repeatedly polished to obtain a series of digital images through the depth of the microstructure. A three-dimensional reconstruction of the microstructure was obtained by assembling the images of the serial sections. Reconstructions were made of unmodified and Sr-modified Al-Si eutectic grains that were quenched during eutectic solidification. The three-dimensional reconstructions show that strontium modification changes the size and morphology of the Al-Si eutectic grains. Sr-modified eutectic grains are large approximately spherical grains and grow with a high interface velocity. In the unmodified alloy, many small eutectic grains grow from the dendrite arm tips. The unmodified eutectic grains appear to grow from the dendrite tips into the undercooled liquid, rather than back-filling the dendrite envelope, possibly continuing to grow in the same manner as the equiaxed dendrites. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a biventricular model, which couples the electrical and mechanical properties of the heart, and computer simulations of ventricular wall motion and deformation by means of a biventricular model. In the constructed electromechanical model, the mechanical analysis was based on composite material theory and the finite-element method; the propagation of electrical excitation was simulated using an electrical heart model, and the resulting active forces were used to calculate ventricular wall motion. Regional deformation and Lagrangian strain tensors were calculated during the systole phase. Displacements, minimum principal strains and torsion angle were used to describe the motion of the two ventricles. The simulations showed that during the period of systole, (1) the right ventricular free wall moves towards the septum, and at the same time, the base and middle of the free wall move towards the apex, which reduces the volume of the right ventricle; the minimum principle strain (E3) is largest at the apex, then at the middle of the free wall and its direction is in the approximate direction of the epicardial muscle fibres; (2) the base and middle of the left ventricular free wall move towards the apex and the apex remains almost static; the torsion angle is largest at the apex; the minimum principle strain E3 is largest at the apex and its direction on the surface of the middle wall of the left ventricle is roughly in the fibre orientation. These results are in good accordance with results obtained from MR tagging images reported in the literature. This study suggests that such an electromechanical biventricular model has the potential to be used to assess the mechanical function of the two ventricles, and also could improve the accuracy ECG simulation when it is used in heart torso model-based body surface potential simulation studies.