20 resultados para Teleportation
Resumo:
This paper discusses methods for the optical teleportation of continuous-variable polarization states. We show that using two pairs of entangled beams, generated using four squeezed beams, perfect teleportation of optical polarization states can be performed. Restricting ourselves to three squeezed beams, we demonstrate that polarization state teleportation can still exceed the classical limit. The three-squeezer schemes involve either the use of quantum nondemolition measurement or biased entanglement generated from a single squeezed beam. We analyze the efficacies of these schemes in terms of fidelity, signal transfer coefficients, and quantum correlations.
Resumo:
We examine the teleportation of an unknown spin-1/2 quantum state along a quantum spin chain with an even number of sites. Our protocol, using a sequence of Bell measurements, may be viewed as an iterated version of the 2-qubit protocol of C. H. Bennett et al. [Phys. Rev. Lett. 70, 1895 (1993)]. A decomposition of the Hilbert space of the spin chain into 4 vector spaces, called Bell subspaces, is given. It is established that any state from a Bell subspace may be used as a channel to perform unit fidelity teleportation. The space of all spin-0 many-body states, which includes the ground states of many known antiferromagnetic systems, belongs to a common Bell subspace. A channel-dependent teleportation parameter O is introduced, and a bound on the teleportation fidelity is given in terms of O.
Resumo:
We investigate the problem of teleporting an unknown qubit state to a recipient via a channel of 2L qubits. In this procedure a protocol is employed whereby L Bell state measurements are made and information based on these measurements is sent via a classical channel to the recipient. Upon receiving this information the recipient determines a local gate which is used to recover the original state. We find that the 2(2L)-dimensional Hilbert space of states available for the channel admits a decomposition into four subspaces. Every state within a given subspace is a perfect channel, and each sequence of Bell measurements projects 2L qubits of the system into one of the four subspaces. As a result, only two bits of classical information need be sent to the recipient for them to determine the gate. We note some connections between these four subspaces and ground states of many-body Hamiltonian systems, and discuss the implications of these results towards understanding entanglement in multi-qubit systems.
Resumo:
We show that quantum computation circuits using coherent states as the logical qubits can be constructed from simple linear networks, conditional photon measurements, and "small" coherent superposition resource states.
Resumo:
We investigate multipartite entanglement in relation to the process of quantum state exchange. In particular, we consider such entanglement for a certain pure state involving two groups of N trapped atoms. The state, which can be produced via quantum state exchange, is analogous to the steady-state intracavity state of the subthreshold optical nondegenerate parametric amplifier. We show that, first, it possesses some 2N-way entanglement. Second, we place a lower bound on the amount of such entanglement in the state using a measure called the entanglement of minimum bipartite entropy.
Resumo:
We present an experimental analysis of quadrature entanglement produced from a pair of amplitude squeezed beams. The correlation matrix of the state is characterized within a set of reasonable assumptions, and the strength of the entanglement is gauged using measures of the degree of inseparability and the degree of Einstein-Podolsky-Rosen (EPR) paradox. We introduce controlled decoherence in the form of optical loss to the entangled state, and demonstrate qualitative differences in the response of the degrees of inseparability and EPR paradox to this loss. The entanglement is represented on a photon number diagram that provides an intuitive and physically relevant description of the state. We calculate efficacy contours for several quantum information protocols on this diagram, and use them to predict the effectiveness of our entanglement in those protocols.
Resumo:
We derive optimal cloning limits for finite Gaussian distributions of coherent states and describe techniques for achieving them. We discuss the relation of these limits to state estimation and the no-cloning limit in teleportation. A qualitatively different cloning limit is derived for a single-quadrature Gaussian quantum cloner.
Resumo:
We discuss the long-distance transmission of qubits encoded in optical coherent states. Through absorption, these qubits suffer from two main types of errors, namely the reduction of the amplitude of the coherent states and accidental application of the Pauli Z operator. We show how these errors can be fixed using techniques of teleportation and error-correcting codes.
Resumo:
In this paper we explore the possibility of fundamental tests for coherent-state optical quantum computing gates [ T. C. Ralph et al. Phys. Rev. A 68 042319 (2003)] using sophisticated but not unrealistic quantum states. The major resource required in these gates is a state diagonal to the basis states. We use the recent observation that a squeezed single-photon state [S(r)∣1⟩] approximates well an odd superposition of coherent states (∣α⟩−∣−α⟩) to address the diagonal resource problem. The approximation only holds for relatively small α, and hence these gates cannot be used in a scalable scheme. We explore the effects on fidelities and probabilities in teleportation and a rotated Hadamard gate.
Resumo:
Recent progress in fabrication and control of single quantum systems presage a nascent technology based on quantum principles. We review these principles in the context of specific examples including: quantum dots, quantum electromechanical systems, quantum communication and quantum computation.
Resumo:
With growing success in experimental implementations it is critical to identify a gold standard for quantum information processing, a single measure of distance that can be used to compare and contrast different experiments. We enumerate a set of criteria that such a distance measure must satisfy to be both experimentally and theoretically meaningful. We then assess a wide range of possible measures against these criteria, before making a recommendation as to the best measures to use in characterizing quantum information processing.
Resumo:
We present unified, systematic derivations of schemes in the two known measurement-based models of quantum computation. The first model (introduced by Raussendorf and Briegel, [Phys. Rev. Lett. 86, 5188 (2001)]) uses a fixed entangled state, adaptive measurements on single qubits, and feedforward of the measurement results. The second model (proposed by Nielsen, [Phys. Lett. A 308, 96 (2003)] and further simplified by Leung, [Int. J. Quant. Inf. 2, 33 (2004)]) uses adaptive two-qubit measurements that can be applied to arbitrary pairs of qubits, and feedforward of the measurement results. The underlying principle of our derivations is a variant of teleportation introduced by Zhou, Leung, and Chuang, [Phys. Rev. A 62, 052316 (2000)]. Our derivations unify these two measurement-based models of quantum computation and provide significantly simpler schemes.
Resumo:
Quantum-state sharing is a protocol where perfect reconstruction of quantum states is achieved with incomplete or partial information in a multipartite quantum network. Quantum-state sharing allows for secure communication in a quantum network where partial information is lost or acquired by malicious parties. This protocol utilizes entanglement for the secret-state distribution and a class of quantum disentangling protocols for the state reconstruction. We demonstrate a quantum-state sharing protocol in which a tripartite entangled state is used to encode and distribute a secret state to three players. Any two of these players can collaborate to reconstruct the secret state, while individual players obtain no information. We investigate a number of quantum disentangling processes and experimentally demonstrate quantum-state reconstruction using two of these protocols. We experimentally measure a fidelity, averaged over all reconstruction permutations, of F=0.73 +/- 0.02. A result achievable only by using quantum resources.
Resumo:
We show that the classification of bipartite pure entangled states when local quantum operations are restricted yields a structure that is analogous in many respects to that of mixed-state entanglement. Specifically, we develop this analogy by restricting operations through local superselection rules, and show that such exotic phenomena as bound entanglement and activation arise using pure states in this setting. This analogy aids in resolving several conceptual puzzles in the study of entanglement under restricted operations. In particular, we demonstrate that several types of quantum optical states that possess confusing entanglement properties are analogous to bound entangled states. Also, the classification of pure-state entanglement under restricted operations can be much simpler than for mixed-state entanglement. For instance, in the case of local Abelian superselection rules all questions concerning distillability can be resolved.