114 resultados para Target site


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe here two new transposable elements, CemaT4 and CemaT5, that were identified within the sequenced genome of Caenorhabditis elegans using homology based searches. Five variants of CemaT4 were found, all non-autonomous and sharing 26 bp inverted terminal repeats (ITRs) and segments (152-367 bp) of sequence with similarity to the CemaT1 transposon of C. elegans. Sixteen copies of a short, 30 bp repetitive sequence, comprised entirely of an inverted repeat of the first 15 bp of CemaT4's ITR, were also found, each flanked by TA dinucleotide duplications, which are hallmarks of target site duplications of mariner-Tc transposon transpositions. The CemaT5 transposable element had no similarity to maT elements, except for sharing identical ITR sequences with CemaT3. We provide evidence that CemaT5 and CemaT3 are capable of excising from the C. elegans genome, despite neither transposon being capable of encoding a functional transposase enzyme. Presumably, these two transposons are cross-mobilised by an autonomous transposon that recognises their shared ITRs. The excisions of these and other non-autonomous elements may provide opportunities for abortive gap repair to create internal deletions and/or insert novel sequence within these transposons. The influence of non-autonomous element mobility and structural diversity on genome variation is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The olfactory nervous system is responsible for the detection of odors. Primary sensory olfactory neurons are located in a neuroepithelial sheet lining the nasal cavity. The axons from these neurons converge on to discrete loci or glomeruli in the olfactory bulb. Each glomerulus consists of the termination of thousands of primary axons on the dendrites of second-order olfactory neurons. What are the molecular mechanisms which guide growing olfactory axons to select sites in the olfactory bulb? We have shown that subpopulations of these axons differentially express cell surface carbohydrates and that these different subpopulations target and terminate in particular regions of the olfactory bulb. Interestingly, the olfactory neurons and glial components in the olfactory pathway between the nose and brain express galectin-1. By using in vitro assays of neurite outgrowth we found that both galectin-1 and it's ligands were capable of specifically stimulating neurite elongation. Examination of the olfactory system in galectin-1 null mutants revealed that a subpopulation of axons failed to navigate to their target site in the olfactory bulb. This is the first phenotypic effect observed in galectin-1 null mutants and indicates that galectin-1 has a role in the growth and/or guidance of a subpopulation of axons in the olfactory system during development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Each primary olfactory neuron stochastically expresses one of similar to1000 odorant receptors. The total population of these neurons therefore consists of similar to1,000 distinct subpopulations, each of which are mosaically dispersed throughout one of four semi-annular zones in the nasal cavity. The axons of these different subpopulations are initially intermingled within the olfactory nerve. However, upon reaching the olfactory bulb, they sort out and converge so that axons expressing the same odorant receptor typically target one or two glomeruli. The spatial location of each of these 1800 glomeruli are topographically-fixed in the olfactory bulb and are invariant from animal to animal. Thus, while odorant receptors are expressed mosaically by neurons throughout the olfactory neuroepithelium their axons sort out, converge and target the same glomerulus within the olfactory bulb. How is such precise and reproducible topographic targeting generated? While some of the mechanisms governing the growth cone guidance of olfactory sensory neurons are understood, the cues responsible for homing axons to their target site remain elusive.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A newly described non-long terminal repeat (non-LTR) retrotransposon element was isolated from the genome of the Oriental schistosome, Schistosoma japonicum. At least 1000 partial copies of the element, which was named pido, were dispersed throughout the genome of S. japonicum. As is usual with non-LTR retrotransposons, it is expected that many pido elements will be 5'-truncated. A consensus sequence of 3564 bp of the truncated pido element was assembled from several genomic fragments that contained pido-hybridizing sequences. The sequence encoded part of the first open reading frame (ORF), the entire second ORF and, at its 3'-terminus, a tandemly repetitive, A-rich (TA(6)TA(5)TA(8)) tail, The ORF1 of pido encoded a nucleic acid binding protein and ORF2 encoded a retroviral-like polyprotein that included apurinic/apyrimidinic endonuclease (EN) and reverse transcriptase (RT) domains, in that order. Based on its sequence and structure, and phylogenetic analyses of both the RT and EN domains, pido belongs to the chicken repeat 1 (CR1)-like lineage of elements known from the chicken, turtle, puffer fish, mosquitoes and other taxa. pido shared equal similarity with CRI from chicken, an uncharacterized retrotransposon from Caenorhabditis elegans and SR1 (a non-LTR retrotransposon) from the related blood fluke Schistosoma mansoni; the level of similarity between pido and SR1 indicated that these two schistosome retrotransposons were related but not orthologous. The findings indicate that schistosomes have been colonized by at least two discrete CRI-like elements. Whereas pido did not appear to have a tight target site specificity, at least one copy of pido has inserted into the 3'-untranslated region of a protein-encoding gene (GeriBank AW736757) of as yet unknown identity. mRNA encoding the RT of pido was detected by reverse transcription-polymerase chain reaction in the egg, miracidium. and adult developmental stages of S. japonicum, indicating that the RT domain was transcribed and suggesting that pido was replicating actively and mobile within the S. japonicum genome. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This manuscript provides a summary of the results presented at a symposium organized to accumulate information on factors that influence the prevalence of acaricide resistance and tick-borne diseases. This symposium was part of the 19th International Conference of the World Association for the Advancement of Veterinary Parasitology (WAAVP), held in New Orleans, LA, USA, during August 10-14, 2003. Populations of southern cattle ticks, Boophilus microplus, from Mexico have developed resistance to many classes of acaricide including chlorinated hydrocarbons (DDT), pyrethroids, organ ophosphates, and formamidines (amitraz). Target site mutations are the most common resistance mechanism observed, but there are examples of metabolic mechanisms. In many pyrethroid resistant strains, a single target site mutation on the Na+ channel confers very high resistance (resistance ratios: >1000x) to both DDT and all pyrethroid acaricides. Acetylcholine esterase affinity for OPs is changed in resistant tick populations. A second mechanism of OP resistance is linked to cytochrome P450 monooxygenase activity. A PCR-based assay to detect a specific sodium channel gene mutation that is associated with resistance to permethrin has been developed. This assay can be performed on individual ticks at any life stage with results available in a few hours. A number of Mexican strains of B. microplus with varying profiles of pesticide resistance have been genotyped using this test. Additionally, a specific metabolic esterase with permethrin-hydrolyzing activity, CzEst9, has been purified and its gene coding region cloned. This esterase has been associated with high resistance to permethrin in one Mexican tick population. Work is continuing to clone specific acetylcholinesterase (AChE) and carboxylesterase genes that appear to be involved in resistance to organophosphates. Our ultimate goal is the design of a battery of DNA- or ELISA-based assays capable of rapidly genotyping individual ticks to obtain a comprehensive profile of their susceptibility to various pesticides. More outbreaks of clinical bovine babesisois and anaplasmosis have been associated with the presence of synthetic pyrethroid (SP) resistance when compared to OP and amidine resistance. This may be the result of differences in the temporal and geographic patterns of resistance development to the different acaricides. If acaricide resistance develops slowly, herd immunity may not be affected. The use of pesticides for the control of pests of cattle other than ticks can affect the incidence of tick resistance and tick-borne diseases. Simple analytical models of tick- and tsetse-bome diseases suggest that reducing the abundance of ticks, by treating cattle with pyrethroids for example, can have a variety of effects on tick-bome diseases. In the worst-case scenario, the models suggest that treating cattle might not only have no impact on trypanosomosis but could increase the incidence of tick-bome disease. In the best-case, treatment could reduce the incidence of both trypanosomosis and tick-bome diseases Surveys of beef and dairy properties in Queensland for which tick resistance to amitraz was known were intended to provide a clear understanding of the economic and management consequences resistance had on their properties. Farmers continued to use amitraz as the major acaricide for tick control after the diagnosis of resistance, although it was supplemented with moxidectin (dairy farms) or fluazuron, macrocyclic lactones or cypermethrin/ chlorfenvinphos. (C) 2004 Published by Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The branched-chain amino acids are synthesized by plants, fungi and microorganisms, but not by animals. Therefore, the enzymes of this pathway are potential target sites for the development of antifungal agents, antimicrobials and herbicides. Most research has focused upon the first enzyme in this biosynthetic pathway, acetohydroxyacid synthase (AHAS) largely because it is the target site for many commercial herbicides. In this review we provide a brief overview of the important properties of each enzyme within the pathway and a detailed summary of the most recent AHAS research, against the perspective of work that has been carried out over the past 50 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structurally related tetratricopeptide repeat motifs in steroid receptor-associated immunophilins and the STI1 homolog, Hop, mediate the interaction with a common cellular target, hsp90, We have identified the binding domain in hsp90 for cyclophilin 40 (CyP40) using a two-hybrid system screen of a mouse cDNA library. All isolated clones encoded the intact carboxyl terminus of hsp90 and overlapped with a common region corresponding to amino acids 558-724 of murine hsp84, The interaction was confirmed in vitro with bacterially expressed CyP40 and deletion mutants of hsp90 beta and was delineated further to a 124-residue COOH-terminal segment of hsp90, Deletion of the conserved MEEVD sequence at the extreme carboxyl terminus of hsp90 precludes interaction with CyP40, signifying an important role for this motif in hsp90 function. We show that CyP40 and Hop display similar interaction profiles with hsp90 truncation mutants and present evidence for the direct competition of Hop and FK506-binding protein 52 with CyP40 for binding to the hsp90 COOH-terminal region. Our results are consistent with a common tetratricopeptide repeat interaction site for Hop and steroid receptor associated immunophilins within a discrete COOH-terminal domain of hsp90. This region of hsp90 mediates ATP-independent chaperone activity, overlaps the hsp90 dimerization domain, and includes structural elements important for steroid receptor interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary olfactory neurons project their axons to the olfactory bulb, where they terminate in discrete loci called glomeruli. All neurons expressing the same odorant receptor appear to terminate in a few glomeruli in each olfactory bulb. In the P2-IRES-tau-LacZ line of transgenic mice, LacZ is expressed in the perikarya and axons of primary olfactory neurons that express the P2 odorant receptor. In the present study, we examined the developmental appearance of P2 neurons, the topographical targeting of P2 axons, as well as the formation of P2 glomeruli in the olfactory bulb. P2 axons were first detected in the olfactory nerve fiber layer at embryonic day 14.5 (E14.5), and by E15.5 these axons terminated in a broad locus in the presumptive glomerular layer. During the next 5 embryonic days, the elongated cluster of axons developed into discrete glomerulus-like structures. In many cases, glomeruli appeared as pairs, which were initially connected by a fascicle of P2 axons. This connection was lost by postnatal day 7.5, and double glomeruli at the same locus were observed in 85% of adult animals. During the early postnatal period, there was considerable mistargeting of P2 axons. In some cases P2 axons entered inappropriate glomeruli or continued to grow past the glomerular layer into the deeper layers of the olfactory bulb. These aberrant axons were not observed in adult animals. These results indicate that olfactory axons exhibit errors while converging onto a specific glomerulus and suggest that guidance cues may be diffusely distributed at target sites in the olfactory bulb.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorescence in situ hybridization of a tile path of DNA subclones has previously enabled the cytogenetic definition of the minimal DNA sequence which spans the FRA16D common chromosomal fragile site, located at 16q23.2. Homozygous deletion of the FRA16D locus has been reported in adenocarcinomas of stomach, colon, lung and ovary. We have sequenced the 270 kb containing the FRA16D fragile site and the minimal homozygously deleted region in tumour cells. This sequence enabled localization of some of the tumour cell breakpoints to regions which contain AT-rich secondary structures similar to those associated with the FRA10B and FRA16B rare fragile sites. The FRA16D DNA sequence also led to the identification of an alternatively spliced gene, named FOR (fragile site FRA16D oxidoreductase), exons of which span both the fragile site and the minimal region of homozygous deletion. In addition, the complete DNA sequence of the FRA16D-containing FOR intron reveals no evidence of additional authentic transcripts. Alternatively spliced FOR transcripts (FOR I, FOR II and FOR III) encode proteins which share N-terminal WW domains and differ at their C-terminus, with FOR III having a truncated oxidoreductase domain. FRA16D-associated deletions selectively affect the FOR gene transcripts. Three out of five previously mapped translocation breakpoints in multiple myeloma are also located within the FOR gene. FOR is therefore the principle genetic target for DNA instability at 16q23.2 and perturbation of FOR function is likely to contribute to the biological consequences of DNA instability at FRA16D in cancer cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acetohydroxyacid synthase (AHAS; EC 4.1.3.18) catalyzes the first step in branched-chain amino acid biosynthesis. The enzyme requires thiamin diphosphate and FAD for activity, but the latter is unexpected, because the reaction involves no oxidation or reduction. Due to its presence in plants, AHAS is a target for sulfonylurea and imidazolinone herbicides. Here, the crystal structure to 2.6 A resolution of the catalytic subunit of yeast AHAS is reported. The active site is located at the dimer interface and is near the proposed herbicide-binding site. The conformation of FAD and its position in the active site are defined. The structure of AHAS provides a starting point for the rational design of new herbicides. (C) 2002 Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

VCAM-1 (vascular cell adhesion molecule-1) and Sox18 are involved in vascular development. VCAM-1 is an important adhesion molecule that is expressed on endothelial cells and has a critical role in endothelial activation, inflammation, lymphatic pathophysiology, and atherogenesis. The Sry-related high mobility group box factor Sox18 has previously been implicated in endothelial pathologies. Mutations in human and mouse Sox18 leads to hypotrichosis and lymphedema. Furthermore, both Sox18 and VCAM-1 have very similar spatio-temporal patterns of expression, which is suggestive of crosstalk. We use biochemical techniques, cell culture systems, and the ragged opossum (RaOP) mouse model with a naturally occurring mutation in Sox18 to demonstrate that VCAM-1 is an important target of Sox18. Transfection, site-specific mutagenesis, and gel shift analyses demonstrated that Sox18 directly targeted and trans-activated VCAM-1 expression. Importantly, the naturally occurring Sox18 mutant attenuates the expression and activation of VCAM-1 in vitro. Furthermore, in vivo quantitation of VCAM-1 mRNA levels in wild type and RaOP mice demonstrates that RaOP animals show a dramatic and significant reduction in VCAM-1 mRNA expression in lung, skin, and skeletal muscle. Our observation that the VCAM-1 gene is an important target of SOX18 provides the first molecular insights into the vascular abnormalities in the mouse mutant ragged and the human hypotrichosis-lymphedematelangiectasia disorder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

WT1 encodes a transcription factor involved in kidney development and tumorigenesis. Using representational difference analysis, we identified a new set of WT1 targets, including a homologue of the Drosophila receptor tyrosine kinase regulator, sprouty. Sprouty1 was up-regulated in cell lines expressing wild-type but not mutant WT1. WT1 bound to the endogenous sprouty1 promoter in vivo and directly regulated sprouty1 through an early growth response gene-1 binding site. Expression of Sprouty1 and WT1 overlapped in the developing metanephric mesenchyme, and Sprouty1, like WT1, plays a key role in the early steps of glomerulus formation. Disruption of Sprouty1 expression in embryonic kidney explants by antisense oligonucleotides reduced condensation of the metanephric mesenchyme, leading to a decreased number of glomeruli. In addition, sprouty1 was expressed in the ureteric tree and antisense-treated ureteric trees had cystic lumens. Therefore, sprouty1 represents a physiologically relevant target gene of WT1 during kidney development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the role of the hepatitis C virus internal ribosome entry site (HCV IRES) domain IV in translation initiation and regulation, two chimeric IRES elements were constructed to contain the reciprocal domain IV in the otherwise HCV and classical swine fever virus IRES elements. This permitted an examination of the role of domain IV in the control of HCV translation. A specific inhibitor of the HCV IRES, vitamin B-12 was shown to inhibit translation directed by all IRES elements which contained domain IV from the HCV and the GB virus B IRES elements, whereas the HCV core protein could only suppress translation from the wild-type HCV IRES. Thus, the mechanisms of translation inhibition by vitamin B-12 and the core protein differ, and they target different regions of the IRES.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flavivirus West Nile virus (WNV) has spread rapidly throughout the world in recent years causing fever, meningitis, encephalitis, and fatalities. Because the viral protease NS2B/NS3 is essential for replication, it is attracting attention as a potential therapeutic target, although there are currently no antiviral inhibitors for any flavivirus. This paper focuses on elucidating interactions between a hexapeptide substrate (Ae-KPGLKR-p-nitroanilide) and residues at S1 and S2 in the active site of WNV protease by comparing the catalytic activities of selected mutant recombinant proteases in vitro. Homology modeling enabled the predictions of key mutations in VWNV NS3 protease at S1 (V115A/F, D129A/ E/N, S135A, Y150A/F, S160A, and S163A) and S2 (N152A) that might influence substrate recognition and catalytic efficiency. Key conclusions are that the substrate P1 Arg strongly interacts with S1 residues Asp-129, Tyr-150, and Ser-163 and, to a lesser extent, Ser-160, and P2 Lys makes an essential interaction with Asn-152 at S2. The inferred substrate-enzyme interactions provide a basis for rational protease inhibitor design and optimization. High sequence conservation within flavivirus proteases means that this study may also be relevant to design of protease inhibitors for other flavivirus proteases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Failure to express soluble proteins in bacteria is mainly attributed to the properties of the target protein itself, as well as the choice of the vector, the purification tag and the linker between the tag and protein, and codon usage. The expression of proteins with fusion tags to facilitate subsequent purification steps is a widely used procedure in the production of recombinant proteins. However, the additional residues can affect the properties of the protein; therefore, it is often desirable to remove the tag after purification. This is usually done by engineering a cleavage site between the tag and the encoded protein that is recognised by a site-specific protease, such as the one from tobacco etch virus (TEV). In this study, we investigated the effect of four different tags on the bacterial expression and solubility of nine mouse proteins. Two of the four engineered constructs contained hexahistidine tags with either a long or short linker. The other two constructs contained a TEV cleavage site engineered into the linker region. Our data show that inclusion of the TEV recognition site directly downstream of the recombination site of the Invitrogen Gateway vector resulted, in a loss of solubility of the nine mouse proteins. Our work suggests that one needs to be very careful when making modifications to expression vectors and combining different affinity and fusion tags and cleavage sites: (c) 2006 Elsevier Inc. All rights reserved.