19 resultados para Symbiosis.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nodulation in legumes provides a major conduit of available nitrogen into the biosphere. The development of nitrogen-fixing nodules results from a symbiotic interaction between soil bacteria, commonly called rhizobia, and legume plants. Molecular genetic analysis in both model and agriculturally important legume species has resulted in the identification of a variety of genes that are essential for the establishment, maintenance and regulation of this symbiosis. Autoregulation of nodulation (AON) is a major internal process by which nodule numbers are controlled through prior nodulation events. Characterisation of AON-deficient mutants has revealed a novel systemic signal transduction pathway controlled by a receptor-like kinase. This review reports our present level of understanding on the short- and long-distance signalling networks controlling early nodulation events and AON.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine invertebrates representing at least five phyla are symbiotic with dinoflagellates from the genus Symbiodinium. This group of single-celled protists was once considered to be a single pandemic species, Symbiodinium microadriaticum. Molecular investigations over the past 25 years have revealed, however, that Symbiodinium is a diverse group of organisms with at least eight (A-H) divergent clades that in turn contain multiple molecular subclade types. The diversity within this genus may subsequently determine the response of corals to normal and stressful conditions, leading to the proposal that the symbiosis may impart unusually rapid adaptation to environmental change by the metazoan host. These questions have added importance due to the critical challenges that corals and the reefs they build face as a consequence of current rapid climate change. This review outlines our current understanding of the diverse genus Symbiodinium and explores the ability of this genus and its symbioses to adapt to rapid environmental change. (c) 2006 Rubel Foundation, ETH Zurich. Published by Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thiol tripeptides, glutathione (GSH) and homoglutathione (hGSH), perform multiple roles in legumes, including protection against toxicity of free radicals and heavy metals. The three genes involved in the synthesis of GSH and hGSH in the model legume, Lotus japonicus, have been fully characterized and appear to be present as single copies in the genome. The gamma-glutamylcysteine synthetase (gammaecs) gene was mapped on the long arm of chromosome 4 (70.0 centimorgans [cM]) and consists of 15 exons, whereas the glutathione synthetase (gshs) and homoglutathione synthetase (hgshs) genes were mapped on the long arm of chromosome 1 (81.3 cM) and found to be arranged in tandem, with a separation of approximately 8 kb. Both genes consist of 12 exons of exactly the same size (except exon 1, which is similar). Two types of transcripts were detected for the gshs gene, which putatively encode proteins localized in the plastids and cytosol. Promoter regions contain cis-acting regulatory elements that may be involved in the plant's response to light, hormones, and stress. Determination of transcript levels, enzyme activities, and thiol contents in nodules, roots, and leaves revealed that gammaecs and hgshs are expressed in all three plant organs, whereas gshs is significantly functional only in nodules. This strongly suggests an important role of GSH in the rhizobia-legume symbiosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A preliminary field survey was conducted to determine the distribution of ectosymbiotic shrimp Periclimenes holthuisi on the sea anemone Stichodactyla haddoni in Moreton Bay (Queensland, Australia). Laboratory experiments were also carried out to verify whether the shrimp show a preference for one anemone host. In the field, 45 individuals of P. holthuisi were found to be associated with 70% of the specimens of S. haddoni (n=20). We inferred this shrimp population was not space-limited because not all anemones were colonized. After having been isolated from their natural host for 2 weeks, when placed between individuals of S. haddoni and Macrodactyla doreensis (an anemone that is sympatric with S. haddoni), shrimp overwhelmingly selected S. haddoni (92%). To establish whether M. doreensis may serve as an alternative host for P. holthuisi, unacclimated shrimp were forced to associate with this anemone. Macrodactyla doreensis showed little tentacle reaction during this association; shrimp were found on the anemone's tentacles and the column. The finding that M. doreensis can serve as an alternative host for P. holthuisi demonstrates that this anemoneshrimp is adaptable to another anemone host and thus may not be highly host specific.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most commonly asked question about cooperative interactions is how they are maintained when cheating is theoretically more profitable [1]. In cleaning interactions, where cleaners remove parasites from apparently cooperating clients, the classical question asked is why cleaner fish can clean piscivorous client fish without being eaten, a problem Trivers [2] used to explain reciprocal altruism. Trivers [2] suggested that predators refrain from eating cleaners only when the repeated removal of parasites by a particular cleaner results in a greater benefit than eating the cleaner. Although several theoretical models have examined cheating behavior in clients [3,4], no empirical tests have been done (but see Darcy [5]). It has been observed that cleaners are susceptible to predation [6, 7]. Thus, cleaners should have evolved strategies to avoid conflict or being eaten. In primates, conflicts are often resolved with conflict or preconflict management behavior [8]. Here, I show that cleaner fish tactically stimulate clients while swimming in an oscillating dancing manner (tactile dancing) more when exposed to hungry piscivorous clients than satiated ones, regardless of the client's parasite load. Tactile dancing thus may function as a preconflict management strategy that enables cleaner fish to avoid conflict with potentially dangerous clients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cleaner fish, Labroides dimidiatus, prefer the mucus of the parrotfish, Chlorurus sordidus, to parasitic gnathiid isopods, the main items in their diet, indicating a major conflict between clients and cleaners over what the latter should eat during interactions. We tested whether the conflict varied with client species (and the quality of its mucus) and with the presence of blood in the gnathfids. First, we offered cleaners the choice between mucus of the parrotfish and that of the snapper, Lutjanus fulviflamma. When offered equal amounts of mucus on Plexiglas plates, cleaners readily developed a significant preference for the parrotfish mucus. Reducing the amount of parrotfish mucus by 75% made the preference disappear. In a second test, we offered the cleaners gnathiids that were or were not engorged with client fish blood. Cleaners showed no significant preference for either food item. Our results suggest that the degree of conflict between cleaners and clients may vary between species, depending on whether the latter have a preferred mucus. In contrast, the cleaners' lack of preference for engorged gnathiids benefits clients because it means that cleaners do not hesitate to eat unengorged gnathiids before the gnathiids harm the fish by removing blood or by transmitting blood parasites. (C) 2004 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coral reefs are the most diverse marine ecosystem and embrace possibly millions of plant, animal and protist species. Mutualistic symbioses are a fundamental feature of coral reefs that have been used to explain their structure, biodiversity and existence. Complex inter-relationships between hosts, habitats and symbionts belie closely coupled nutrient and community dynamics that create the circumstances for something from nothing (or the oasis in a nutrient desert). The flip side of these dynamics is a close dependency between species, which results in a series of non-linear relationships as conditions change. These responses are being highlighted as anthropogenic influences increase across the world's tropical and subtropical coastlines. Caribbean as well as Indo-Pacific coral populations are now in a serious decline in many parts of the world. This has resulted in a significant reorganization of how coral reef ecosystems function. Among the spectra of changes brought about by humans is rapid climate change. Mass coral bleaching - the loss of the dinoflagellate symbionts from reef-building corals - and mortality has affected the world's coral reefs with increasing frequency and intensity since the late 1970s. Mass bleaching events, which often cover thousands of square kilometres of coral reefs, are triggered by small increases (+1-3degreesC) in water temperature. These increases in sea temperature are often seen during warm phase weather conditions (e.g. ENSO) and are increasing in size and magnitude. The loss of living coral cover (e.g. 16% globally in 1998, an exceptionally warm year) is resulting in an as yet unspecified reduction in the abundance of a myriad of other species. Projections from general circulation models (GCM) used to project changes in global temperature indicate that conditions even under the mildest greenhouse gas emission scenarios may exceed the thermal tolerances of most reef-building coral communities. Research must now explore key issues such as the extent to which the thermal tolerances of corals and their symbionts are dynamic if bleaching and disease are linked; how the loss of high densities of reef-building coral will affect other dependent species; and, how the loss of coral populations will affect the millions of people globally who depend on coral reefs for their daily survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rising sea temperatures are increasing the incidences of mass coral bleaching (the dissociation of the coral-algal symbiosis) and coral mortality. In this study, the effects of bleaching (induced by elevated light and temperature) on the condition of symbiotic dinoflagellates (Symbiodinium sp.) within the tissue of the hard coral Stylophora pistillata (Esper) were assessed using a suite of techniques. Bleaching of S. pistillata was accompanied by declines in the maximum potential quantum yield of photosynthesis (F-v/F-m, measured using pulse amplitude modulated [PAM] fluorometry), an increase in the number of Sytox-green-stained algae (indicating compromised algal membrane integrity and cell death), an increase in 2',7'-dichlorodihydrofluroscein diacetate (H(2)DCFDA)stained algae (indicating increased oxidative stress), as well as ultrastructural changes (vacuolisation, losses of chlorophyll, and an increase in accumulation bodies). Algae expelled from S. pistillata exhibited a complete disorganisation of cellular contents; expelled cells contained only amorphous material. In situ samples taken during a natural mass coral bleaching event on the Great Barrier Reef in February 2002 also revealed a high number of Sytox-labelled algae cells in symbio. Dinoflagellate degeneration during bleaching seems to be similar to the changes resulting from senescence-phase cell death in cultured algae. These data support a role for oxidative stress in the mechanism of coral bleaching and highlight the importance of algal degeneration during the bleaching of a reef coral.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Signals transmit information to receivers about sender attributes, increase the fitness of both parties, and are selected for in cooperative interactions between species to reduce conflict [1, 2]. Marine cleaning interactions are known for stereotyped behaviors [3-6] that likely serve as signals. For example, dancing and tactile dancing in cleaner fish may serve to advertise cleaning services to client fish [7] and manipulate client behavior [8], respectively. Cleaner shrimp clean fish [9], yet are cryptic in comparison to cleaner fish. Signals, therefore, are likely essential for cleaner shrimp to attract clients. Here, we show that the yellow-beaked cleaner shrimp [110] Urocaridella sp. c [11] uses a stereotypical side-to-side movement, or rocking dance, while approaching potential client fish in the water column. This dance was followed by a cleaning interaction with the client 100% of the time. Hungry cleaner shrimp, which are more willing to clean than satiated ones [12], spent more time rocking and in closer proximity to clients Cephaiopholis cyanostigma than satiated ones, and when given a choice, clients preferred hungry, rocking shrimp. The rocking dance therefore influenced client behavior and, thus, appears to function as a signal to advertise the presence of cleaner shrimp to potential clients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autoregulatory mechanisms have been reported in the rhizobial and the mycorrhizal symbiosis. Autoregulation means that already existing nodules or an existing root colonization by an arbuscular mycorrhizal fungus systemically suppress subsequent nodule formation/root colonization in other parts of the root system. Mutants of some legumes lost their ability to autoregulate the nodule number and thus display a supernodulating phenotype. On studying the effect of pre-inoculation of one side of a split-root system with an arbuscular mycorrhizal fungus on subsequent mycorrhization in the second side of the split-root system of a wild-type soybean (Glycine max L.) cv. Bragg and its supernodulating mutant nts1007, we observed a clear suppressional effect in the wild-type, whereas further root colonization in the split-root system of the mutant nts1007 was not suppressed. These data strongly indicate that the mechanisms involved in supernodulation also affect mycorrhization and support the hypothesis that the autoregulation in the rhizobial and the mycorrhizal symbiosis is controlled in a similar manner. The accumulation patterns of the plant hormones IAA, ABA and Jasmonic acid (JA) in non-inoculated control plants and split-root systems of inoculated plants with one mycorrhizal side of the split-root system and one non-mycorrhizal side, indicate an involvement of IAA in the autoregulation of mycorrhization. Mycorrhizal colonization of soybeans also resulted in a strong induction of ABA and JA levels, but on the basis of our data the role of these two phytohormones in mycorrhizal autoregulation is questionable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ten strains identified as marine actinomycetes related to the 'Salinospora ' group previously reported only from marine sediments were isolated from the Great Barrier Reef marine sponge Pseudoceratina clavata. The relationship of the isolates to 'Salinospora' was confirmed by phylogenetic analysis of 16S rRNA gene sequences. Colony morphology and pigmentation, occurrence and position of spores, and salinity requirements for growth were all consistent with this relationship. Genes homologous to beta-ketosynthase, an enzyme forming part of a polyketide synthesis complex, were retrieved from these isolates; these genes shared homology with other Type I ketosynthase genes, and phylogenetic comparison with amino acid sequences derived from database beta-ketosynthase genes was consistent with the close relationship of these isolates to the actinomycetes. Primers based on 16S rRNA gene sequences and designed for targeting amplification of members of the 'Salinospora' group via polymerase chain reaction have been used to demonstrate occurrence of these actinomycetes within the sponge tissue. In vitro bioassays of extracts from the isolates for antibiotic activity demonstrated that these actinomycetes have the potential to inhibit other sponge symbionts in vivo, including both Gram-negative and Gram-positive bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elevated ocean temperatures can cause coral bleaching, the loss of colour from reef-building corals because of a breakdown of the symbiosis with the dinoflagellate Symbiodinium. Recent studies have warned that global climate change could increase the frequency of coral bleaching and threaten the long-term viability of coral reefs. These assertions are based on projecting the coarse output from atmosphere-ocean general circulation models (GCMs) to the local conditions around representative coral reefs. Here, we conduct the first comprehensive global assessment of coral bleaching under climate change by adapting the NOAA Coral Reef Watch bleaching prediction method to the output of a low- and high-climate sensitivity GCM. First, we develop and test algorithms for predicting mass coral bleaching with GCM-resolution sea surface temperatures for thousands of coral reefs, using a global coral reef map and 1985-2002 bleaching prediction data. We then use the algorithms to determine the frequency of coral bleaching and required thermal adaptation by corals and their endosymbionts under two different emissions scenarios. The results indicate that bleaching could become an annual or biannual event for the vast majority of the world's coral reefs in the next 30-50 years without an increase in thermal tolerance of 0.2-1.0 degrees C per decade. The geographic variability in required thermal adaptation found in each model and emissions scenario suggests that coral reefs in some regions, like Micronesia and western Polynesia, may be particularly vulnerable to climate change. Advances in modelling and monitoring will refine the forecast for individual reefs, but this assessment concludes that the global prognosis is unlikely to change without an accelerated effort to stabilize atmospheric greenhouse gas concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photosynthetic endolithic algae and cyanobacteria live within the skeletons of many scleractinians. Under normal conditions, less than 5% of the photosynthetically active radiation (PAR) reaches the green endolithic algae because of the absorbance of light by the endosymbiotic dinoflagellates and the carbonate skeleton. When corals bleach (loose dinoflagellate symbionts), however, the tissue of the corals become highly transparent and photosynthetic microendoliths may be exposed to high levels of both thermal and solar stress. This study explores the consequence of these combined stresses on the phototrophic endoliths inhabiting the skeleton of Montipora monasteriata, growing at Heron Island, on the southern Great Barrier Reef. Endoliths that were exposed to sun after tissue removal were by far more susceptible to thermal photoinhibition and photo-damage than endoliths under coral tissue that contained high concentrations of brown dinoflagellate symbionts. While temperature or light alone did not result in decreased photosynthetic efficiency of the endoliths, combined thermal and solar stress caused a major decrease and delayed recovery. Endoliths protected under intact tissue recovered rapidly and photoacclimated soon after exposure to elevated sea temperatures. Endoliths under naturally occurring bleached tissue of M. monasteriata colonies (bleaching event in March 2004 at Heron Island) acclimated to increased irradiance as the brown symbionts disappeared. We suggest that two major factors determine the outcome of thermal bleaching to the endolith community. The first is the microhabitat and light levels under which a coral grows, and the second is the susceptibility of the coral-dinoflagellates symbiosis to thermal stress. More resistant corals may take longer to bleach allowing endoliths time to acclimate to a new light environment. This in turn may have implications for coral survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report describes the presence of a unique dual domain carbonic anhydrase (CA) in the giant clam, Tridacna gigas. CA plays an important role in the movement of inorganic carbon (C-i) from the surrounding seawater to the symbiotic algae that are found within the clam's tissue. One of these isoforms is a glycoprotein which is significantly larger (70 kDa) than any previously reported from animals (generally between 28 and 52 kDa). This alpha-family CA contains two complete carbonic anhydrase domains within the one protein, accounting for its large size; dual domain CAs have previously only been reported from two algal species. The protein contains a leader sequence, an N-terminal CA domain and a C-terminal CA domain. The two CA domains have relatively little identity at the amino acid level (29%). The genomic sequence spans in excess of 17 kb and contains at least 12 introns and 13 exons. A number of these introns are in positions that are only found in the membrane attached/secreted CAs. This fact, along with phylogenetic analysis, suggests that this protein represents the second example of a membrane attached invertebrate CA and it contains a dual domain structure unique amongst all animal CAs characterized to date.