32 resultados para Statistical language models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the creation of 3D statistical shape models of the knee bones and their use to embed information into a segmentation system for MRIs of the knee. We propose utilising the strong spatial relationship between the cartilages and the bones in the knee by embedding this information into the created models. This information can then be used to automate the initialisation of segmentation algorithms for the cartilages. The approach used to automatically generate the 3D statistical shape models of the bones is based on the point distribution model optimisation framework of Davies. Our implementation of this scheme uses a parameterized surface extraction algorithm, which is used as the basis for the optimisation scheme that automatically creates the 3D statistical shape models. The current approach is illustrated by generating 3D statistical shape models of the patella, tibia and femoral bones from a segmented database of the knee. The use of these models to embed spatial relationship information to aid in the automation of segmentation algorithms for the cartilages is then illustrated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electricity market price forecast is a changeling yet very important task for electricity market managers and participants. Due to the complexity and uncertainties in the power grid, electricity prices are highly volatile and normally carry with spikes. which may be (ens or even hundreds of times higher than the normal price. Such electricity spikes are very difficult to be predicted. So far. most of the research on electricity price forecast is based on the normal range electricity prices. This paper proposes a data mining based electricity price forecast framework, which can predict the normal price as well as the price spikes. The normal price can be, predicted by a previously proposed wavelet and neural network based forecast model, while the spikes are forecasted based on a data mining approach. This paper focuses on the spike prediction and explores the reasons for price spikes based on the measurement of a proposed composite supply-demand balance index (SDI) and relative demand index (RDI). These indices are able to reflect the relationship among electricity demand, electricity supply and electricity reserve capacity. The proposed model is based on a mining database including market clearing price, trading hour. electricity), demand, electricity supply and reserve. Bayesian classification and similarity searching techniques are used to mine the database to find out the internal relationships between electricity price spikes and these proposed. The mining results are used to form the price spike forecast model. This proposed model is able to generate forecasted price spike, level of spike and associated forecast confidence level. The model is tested with the Queensland electricity market data with promising results. Crown Copyright (C) 2004 Published by Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Little is known about the way that teachers articulate notions of variation in their own words. The study reported here was conducted with 17 prospective secondary math and science teachers enrolled in a preservice teacher education course which engaged them in statistical inquiry of testing data. This qualitative study examines how these preservice teachers articulated notions of variation as they compared two distributions. Although the teachers made use of tandard statistical language, they also expressed rich views of variation through nonstandard terminology. This paper details the statistical language used by the rospective teachers, categorizing both standard and nonstandard expressions. Their nonstandard language revealed strong relationships between expressions of variation and expressions of distribution. Implications and the benefits of nonstandard language in statistics are outlined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many variables that are of interest in social science research are nominal variables with two or more categories, such as employment status, occupation, political preference, or self-reported health status. With longitudinal survey data it is possible to analyse the transitions of individuals between different employment states or occupations (for example). In the statistical literature, models for analysing categorical dependent variables with repeated observations belong to the family of models known as generalized linear mixed models (GLMMs). The specific GLMM for a dependent variable with three or more categories is the multinomial logit random effects model. For these models, the marginal distribution of the response does not have a closed form solution and hence numerical integration must be used to obtain maximum likelihood estimates for the model parameters. Techniques for implementing the numerical integration are available but are computationally intensive requiring a large amount of computer processing time that increases with the number of clusters (or individuals) in the data and are not always readily accessible to the practitioner in standard software. For the purposes of analysing categorical response data from a longitudinal social survey, there is clearly a need to evaluate the existing procedures for estimating multinomial logit random effects model in terms of accuracy, efficiency and computing time. The computational time will have significant implications as to the preferred approach by researchers. In this paper we evaluate statistical software procedures that utilise adaptive Gaussian quadrature and MCMC methods, with specific application to modeling employment status of women using a GLMM, over three waves of the HILDA survey.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Traditional vegetation mapping methods use high cost, labour-intensive aerial photography interpretation. This approach can be subjective and is limited by factors such as the extent of remnant vegetation, and the differing scale and quality of aerial photography over time. An alternative approach is proposed which integrates a data model, a statistical model and an ecological model using sophisticated Geographic Information Systems (GIS) techniques and rule-based systems to support fine-scale vegetation community modelling. This approach is based on a more realistic representation of vegetation patterns with transitional gradients from one vegetation community to another. Arbitrary, though often unrealistic, sharp boundaries can be imposed on the model by the application of statistical methods. This GIS-integrated multivariate approach is applied to the problem of vegetation mapping in the complex vegetation communities of the Innisfail Lowlands in the Wet Tropics bioregion of Northeastern Australia. The paper presents the full cycle of this vegetation modelling approach including sampling sites, variable selection, model selection, model implementation, internal model assessment, model prediction assessments, models integration of discrete vegetation community models to generate a composite pre-clearing vegetation map, independent data set model validation and model prediction's scale assessments. An accurate pre-clearing vegetation map of the Innisfail Lowlands was generated (0.83r(2)) through GIS integration of 28 separate statistical models. This modelling approach has good potential for wider application, including provision of. vital information for conservation planning and management; a scientific basis for rehabilitation of disturbed and cleared areas; a viable method for the production of adequate vegetation maps for conservation and forestry planning of poorly-studied areas. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been an abundance of literature on the modelling of hydrocyclones over the past 30 years. However, in the comminution area at least, the more popular commercially available packages (e.g. JKSimMet, Limn, MODSIM) use the models developed by Nageswararao and Plitt in the 1970s, either as published at that time, or with minor modification. With the benefit of 30 years of hindsight, this paper discusses the assumptions and approximations used in developing these models. Differences in model structure and the choice of dependent and independent variables are also considered. Redundancies are highlighted and an assessment made of the general applicability of each of the models, their limitations and the sources of error in their model predictions. This paper provides the latest version of the Nageswararao model based on the above analysis, in a form that can readily be implemented in any suitable programming language, or within a spreadsheet. The Plitt model is also presented in similar form. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we investigate the asymptotic and finite-sample properties of predictors of regression models with autocorrelated errors. We prove new theorems associated with the predictive efficiency of generalized least squares (GLS) and incorrectly structured GLS predictors. We also establish the form associated with their predictive mean squared errors as well as the magnitude of these errors relative to each other and to those generated from the ordinary least squares (OLS) predictor. A large simulation study is used to evaluate the finite-sample performance of forecasts generated from models using different corrections for the serial correlation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a new identification method based on the residual white noise autoregressive criterion (Pukkila et al. , 1990) to select the order of VARMA structures. Results from extensive simulation experiments based on different model structures with varying number of observations and number of component series are used to demonstrate the performance of this new procedure. We also use economic and business data to compare the model structures selected by this order selection method with those identified in other published studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The results from previous studies have indicated that a pre-attentive component of the event-related potential (ERP), the mismatch negativity (MMN), may be an objective measure of the automatic auditory processing of phonemes and words. Aims: This article reviews the relationship between the MMN data and psycholinguistic models of spoken word processing, in order to determine whether the MMN may be used to objectively pinpoint spoken word processing deficits in individuals with aphasia. Main Contribution: This article outlines the ways in which the MMN data support psycholinguistic models currently used in the clinical management of aphasic individuals. Furthermore, the cell assembly model of the neurophysiological mechanisms underlying spoken word processing is discussed in relation to the MMN and psycholinguistic models. Conclusions: The MMN data support current theoretical psycholinguistic and neurophysiological models of spoken word processing. Future MMN studies that include normal and aphasic populations will further elucidate the role that the MMN may play in the clinical management of aphasic individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apropos the basal ganglia, the dominant striatum and globus pallidus internus (GPi) have been hypothesised to represent integral components of subcortical language circuitry. Working subcortical language theories, however, have failed thus far to consider a role for the STN in the mediation of linguistic processes, a structure recently defined as the driving force of basal ganglia output. The aim of this research was to investigate the impact of surgically induced functional inhibition of the STN upon linguistic abilities, within the context of established models of basal ganglia participation in language. Two males with surgically induced 'lesions' of the dominant and non-dominant dorsolateral STN, aimed at relieving Parkinsonian motor symptoms, served as experimental subjects. General and high-level language profiles were compiled for each subject up to 1 month prior to and 3 months following neurosurgery, within the drug-on state (i.e., when optimally medicated). Comparable post-operative alterations in linguistic performance were observed subsequent to surgically induced functional inhibition of the left and right STN. More specifically, higher proportions of reliable decline as opposed to improvement in post-operative performance were demonstrated by both subjects on complex language tasks, hypothesised to entail the interplay of cognitive-linguistic processes. The outcomes of the current research challenge unilateralised models of functional basal ganglia organisation with the proposal of a potential interhemispheric regulatory function for the STN in the mediation of high-level linguistic processes.