114 resultados para Spinal mobilization
Resumo:
Rhythmic movements brought about by the contraction of muscles on one side of the body give rise to phase-locked changes in the excitability of the homologous motor pathways of the opposite limb. Such crossed facilitation should favour patterns of bimanual coordination in which homologous muscles are engaged simultaneously, and disrupt those in which the muscles are activated in an alternating fashion. In order to examine these issues, we obtained responses to transcranial magnetic stimulation (TMS), to stimulation of the cervicomedullary junction (cervicomedullary-evoked potentials, CMEPs), to peripheral nerve stimulation (H-reflexes and f-waves), and elicited stretch reflexes in the relaxed right flexor carpi radialis (FCR) muscle during rhythmic (2 Hz) flexion and extension movements of the opposite (left) wrist. The potentials evoked by TMS in right FCR were potentiated during the phases of movement in which the left FCR was most strongly engaged. In contrast, CMEPs were unaffected by the movements of the opposite limb. These results suggest that there was systematic variation of the excitability of the motor cortex ipsilateral to the moving limb. H-reflexes and stretch reflexes recorded in right FCR were modulated in phase with the activation of left FCR. As the f-waves did not vary in corresponding fashion, it appears that the phasic modulation of the H-reflex was mediated by presynaptic inhibition of Ia afferents. The observation that both H-reflexes and f-waves were depressed markedly during movements of the opposite indicates that there may also have been postsynaptic inhibition or disfacilitation of the largest motor units. Our findings indicate that the patterned modulation of excitability in motor pathways that occurs during rhythmic movements of the opposite limb is mediated primarily by interhemispheric interactions between cortical motor areas.
Resumo:
Xylem sap from woody species in the wet/dry tropics of northern Australia was analyzed for N compounds. At the peak of the dry season, arginine was the main N compound in sap of most species of woodlands and deciduous monsoon forest. In the wet season, a marked change occurred with amides becoming the main sap N constituents of most species. Species from an evergreen monsoon forest, with a permanent water source, transported amides in the dry season. In the dry season, nitrate accounted for 7 and 12% of total xylem sap N in species of deciduous and evergreen monsoon forests, respectively In the wet season, the proportion of N present as nitrate increased to 22% in deciduous monsoon forest species. These results suggest that N is taken up and assimilated mainly in the wet season and that this newly assimilated N is mostly transported as amide-N (woodland species, monsoon forest species) and nitrate (monsoon forest species). Arginine is the form in which stored N is remobilized and transported by woodland and deciduous monsoon forest species in the dry season. Several proteins, which may represent bark storage proteins, were detected in inner bark tissue from a range of trees in the dry season, indicating that, although N uptake appears to be limited in the dry season, the many tree and shrub species that produce flowers, fruit or leaves in the dry season use stored N to support growth. Nitrogen characteristics of the studied species are discussed in relation to the tropical environment.
Resumo:
The 75 kD low-affinity neurotrophin receptor (p75(NTR)) is expressed in developing and axotomised spinal motor neurons. There is now convincing evidence that p75NTR can, under some circumstances, become cytotoxic and promote neuronal cell death. We report here that a single application of antisense p75(NTR) oligodeoxynucleotides to the proximal nerve stumps of neonatal rats significantly reduces the loss of axotomised motor neurons compared to controls treated with nonsense oligodeoxynucleotides or phosphate-buffered saline. Our investigations also show that daily systemic intraperitoneal injections of antisense p75(NTR) oligodeoxynucleotides for 14 days significantly reduce the loss of axotomised motor neurons compared to controls. Furthermore, we found that systemic delivery over a similar period continues to be effective following axotomy when intraperitoneal injections were 1) administered after a delay of 24 hr, 2) limited to the first 7 days, or 3) administered every third day. In addition, p75(NTR) protein levels were reduced in spinal motor neurons following treatment with antisense p75(NTR) oligodeoxynucleotides. There were also no obvious side effects associated with antisense p75(NTR) oligodeoxynucleotide treatments as determined by behavioural observations and postnatal weight gain. Our findings indicate that antisense-based strategies could be a novel approach for the prevention of motor neuron degeneration associated with injuries or disease. (C) 2001 Wiley-Liss, Inc.
Resumo:
Physiotherapists frequently use manipulative therapy techniques to treat dysfunction and pain resulting from ankle sprain. This study investigated whether a Mulligan's mobilization with movement (MWM) technique improves talocrural dorsiflexion, a major impairment following ankle sprain, and relieves pain in subacute populations. Fourteen subjects with subacute grade II lateral ankle sprains served as their own control in a repeated measures, double-blind randomized controlled trial that measured the initial effects of the MWM treatment on weight bearing dorsiflexion and pressure and thermal pain threshold. The subacute ankle sprain group studied displayed deficits in dorsiflexion and local pressure pain threshold in the symptomatic ankle. Significant improvements in dorsiflexion occurred initially post-MWM (F-(2,F-26) 7.82, P = 0.002), but no significant changes in pressure or thermal pain threshold were observed after the treatment condition. Results indicate that the MWM treatment for ankle dorsiflexion has a mechanical rather than hypoalgesic effect in subacute ankle sprains. The mechanism by which this occurs requires investigation if we are to better understand the role of manipulative therapy in ankle sprain management. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Background: Recent research has shown that Mulligan's Mobilization With Movement treatment technique for the elbow (MWM), a peripheral joint mobilization technique, produces a substantial and immediate pain relief in chronic lateral epicondylalgia (48% increase in pain-free grip strength).(1) This hypoalgesic effect is far greater than that previously reported with spinal manual therapy treatments, prompting speculation that peripheral manual therapy treatments may differ in mechanism of action to spinal manual therapy techniques. Naloxone antagonism and tolerance studies, which employ widely accepted tests for the identification of endogenous opioid-mediated pain control mechanisms, have shown that spinal manual therapy-induced hypoalgesia does not involve an opioid mechanism. Objective: The aim of this study was to evaluate the effect of naloxone administration on the hypoalgesic effect of MWM. Methods: A randomized, controlled trial evaluated the effect of administering naloxone, saline, or no-substance control injection on the MWM-induced hypoalgesia in 18 participants with lateral epicondylalgia. Pain-free grip strength, pressure pain threshold, thermal pain threshold, and upper limb neural tissue provocation test 2b were the outcome measures. Results: The results demonstrated that the initial hypoalgesic effect of the MWM was not antagonized by naloxone, suggesting a nonopioid mechanism of action. Conclusions: The studied peripheral mobilization treatment technique appears to have a similar effect profile to previously studied spinal manual therapy techniques, suggesting a nonopioid-mediated hypoalgesia following manual therapy.
Resumo:
Examined the barriers faced by people with Spinal Cord Injuries (SCI) when integrating their Assistive Technology (AT) into the workplace, as well as factors that contribute to successful integration. In-depth interviews were taken with 5 men (aged 37-50 yrs) with SCI, 3 of their employers and 2 co-workers. Results indicate that in addition to the barriers previously outlined in the literature related to funding the technology, time delays, information availability, training and maintenance, other issues were highlighted. Implications for service providers are considered in relation to these barriers and the factors that prompted successful integration. The author discusses limitations of the study and makes recommendations for future research. (PsycINFO Database Record (c) 2007 APA, all rights reserved)
Resumo:
Background: Spinal signs found in association with atypical chest and abdominal pain may suggest the pain is referred from the thoracic spine. However, the prevalence of such signs in these conditions has rarely been compared with that in those without pain. In this study, the prevalence of spinal signs and dysfunction in patients with back, chest and abdominal pain is compared with that in pain free controls. The aim of the study is to determine the significance of spinal findings in patients with such pain. Methods: A general practitioner blinded to the patients' histories performed a cervical and thoracic spinal examination on general practice patients with back, chest and/or abdominal pain and on controls without pain. Thoracic intervertebral dysfunction was diagnosed on the basis of movement and palpation findings. Results: Seventy three study patients plus 24 controls, were examined. For cervical spinal signs, pain in the back, chest and/or abdomen was associated with pain with active movements and overpressure at end range and with loss of movement range. For thoracic spinal signs, this association held for pain with active movements and overpressure, but not with loss of movement range. The prevalence of thoracic intervertebral dysfunction was 25.0% in controls, 65.5% with chest/abdominal pain, 72.0% with back pain and 79.0% with back pain with chest/abdominal pain. This prevalence was higher with chest pain than with abdominal pain. Conclusions: The results show an association, but not a causal link between thoracic intervertebral dysfunction and atypical chest/abdominal pain. A spinal examination should be performed routinely assessing these conditions. The minimum examination for the detection of intervertebral dysfunction is testing for pain with spinal movements and palpation for tenderness. The interpretation of positive signs requires knowledge of their prevalence in pain free controls and in patients with visceral disease
Resumo:
Palpation for tenderness forms an important part of the manual therapy assessment for musculoskeletal dysfunction, In conjunction with other testing procedures it assists in establishing the clinical diagnosis. Tenderness in the thoracic spine has been reported in the literature as a clinical feature in musculoskeletal conditions where pain and dysfunction are located primarily in the upper quadrant. This study aimed to establish whether pressure pain thresholds (PPTs) of the mid-thoracic region of asymptomatic subjects were naturally lower than those of the cervical and lumbar areas. A within-subject study design was used to examine PPT at four spinal levels C6, T4, T6, and L4 in 50 asymptomatic volunteers. Results showed significant (P < 0.001) regional differences. PPT values increased in a caudal direction. The cervical region had the lowest PPT scores, that is was the most tender. Values increased in the thoracic region and were highest in the lumbar region. This study contributes to the normative data on spinal PPT values and demonstrates that mid-thoracic tenderness relative to the cervical spine is not a normal finding in asymptomatic subjects. (C) 2001 Harcourt Publishers Ltd.