32 resultados para Saline contamination
Resumo:
Objectives. To assess the efficacy of a prolotherapy injection and exercise protocol in the treatment of chronic nonspecific low back pain. Design. Randomized controlled trial with two- by- two factorial design, triple- blinded for injection status, and single- blinded for exercise status. Setting. General practice. Participants. One hundred ten participants with nonspecific low- back pain of average 14 years duration were randomized to have repeated prolotherapy ( 20% glucose/ 0.2% lignocaine) or normal saline injections into tender lumbo- pelvic ligaments and randomized to perform either flexion/ extension exercises or normal activity over 6 months. Main outcome measures: Pain intensity ( VAS) and disability scores ( Roland- Morris) at 2.5, 4, 6, 12, and 24 months. Results. Follow- up was achieved in 96% at 12 months and 80% at 2 years. Ligament injections, with exercises and with normal activity, resulted in significant and sustained reductions in pain and disability throughout the trial, but no attributable effect was found for prolotherapy injections over saline injections or for exercises over normal activity. At 12 months, the proportions achieving more than 50% reduction in pain from baseline by injection group were glucose- lignocaine: 0.46 versus saline: 0.36. By activity group these proportions were exercise: 0.41 versus normal activity: 0.39. Corresponding proportions for > 50% reduction in disability were glucose- lignocaine: 0.42 versus saline 0.36 and exercise: 0.36 versus normal activity: 0.38. There were no between group differences in any of the above measures. Conclusions. In chronic nonspecific low- back pain, significant and sustained reductions in pain and disability occur with ligament injections, irrespective of the solution injected or the concurrent use of exercises.
Resumo:
The infrapatellar fat pad has been implicated as a possible source of anterior knee pain. This study examined the nature, distribution and time-course of experimentally induced pain in the infrapatellar fat pad. Hypertonic saline (5%) was injected into the medial fat pad of 11 healthy individuals with no history of knee pain. Severity of pain was assessed at rest and during activity using an 11 point numerical rating scale (NRS) at regular intervals over 15-30 min following injection. Participants described the size of the pain region from a series of different sized circles while the area and type of pain was established from a body chart and the McGill pain questionnaire. The effect of pain on temperature-pain threshold and sensory thresholds of the anterior knee was assessed. Participants generally reported a deep aching pain that peaked in severity around 3 min and gradually declined over 15 min. Pain levels were not altered by clinical manoeuvres designed to impinge the fat pad. The size of the pain region was related to pain intensity. Pain was most commonly felt in the region of the fat pad medial to the patella, although some individuals reported proximal referred pain as far as the groin region. Thermal and sensory thresholds were not altered at a region close to the injection site during the experimental pain. These results suggest that nociceptive stimulation of the infrapatellar fat pad may cause anterior knee pain that is not necessarily confined locally particularly if pain is severe. This has implications for the investigation of pathological structures in patients presenting clinically with anterior knee pain and provides an experimental model of anterior knee pain. (C) 2003 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to assess the sensitivity and specificity of catheter-drawn and peripheral blood cultures. Paired blood culture samples collected over a 44-month period from a 280 bed Brisbane metropolitan hospital were analysed, using standard clinical and microbiological criteria, to determine whether blood culture isolates represented true bacteraemias or contamination. Catheter-collected cultures had a specificity of 85% compared with 97% for peripheral cultures. In only two instances (0.2%) was the diagnosis of clinically significant bacteraemia made on the basis of catheter culture alone. This study concluded that catheter-collected samples are not a good test for true bacteraemia, and that peripheral. cultures are more reliable when the results of the paired cultures are discordant. (c) 2004 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
We observed unexpected high plasma concentrations of tobrarriycin (48.5 and 28.1 mg/L) in fingerprick blood samples after the nebulization of tobramycin solution for inhalation (tobramycin 300 mg/5 mL, TOBI(R)) by 2 young children aged 3 years. To investigate whether dermal contamination could be the source of error, 3 adult volunteers were present during another nebulization by a third child (age 2 years). The volunteers had exposure to tobramycin by handling the nebulizer or the nebule and also by inhalation from holding the child and being in close proximity while TOBI(R) was being administered. Five blood samples by fingerprick and 2 by venipuncture were collected and assayed for tobramycin concentration. On each occasion the site was swabbed with alcohol wipes to mimic standard patient sampling methods. One site was resampled after cleaning of hands with 2% chlorhexidine gluconate and water. Tobramycin concentrations from venipuncture 1-2 hours after nebulization were all < 0.2 mg/L except for 1 result of 1.2 mg/L. The tobramycin concentrations from fingerpricks before hand washing varied between 6.8 and 172 mg/L, and after hand washing between 0.3 and 17.6 mg/L. Contamination of fingers with tobramycin is likely to have caused the error in the 2 initial cases and did cause misleadingly elevated levels in the adult volunteers. We caution that therapeutic drug monitoring of nebulized tobramycin should not be done by fingerprick sampling, and care should be taken to avoid contamination of the venipuncture site.
Resumo:
Inorganic arsenic compounds are known carcinogens. The human epidemiologic evidence of arsenic-induced skin, lung, and bladder cancers is strong. However, the evidence of arsenic carcinogenicity in animals is very limited. Lack of a suitable animal model until recent years has inhibited studies of the mechanism of arsenic carcinogenesis. The toxicity and bioavailability of arsenic depend on its solubility and chemical forms. Therefore, it is critical to be able to measure arsenic speciation accurately and reliably. However, speciation of arsenic in more complex matrices remains a real challenge. There are tens of millions of people who are being exposed to excessive levels of arsenic in the drinking water alone. The source of contamination is mainly of natural origin and the mass poisoning is occurring worldwide, particularly in developing countries. Chronic arsenicosis resulting in cancer and non-cancer diseases will impact significantly on the public health systems in their respective countries. Effective watershed management and remediation technologies in addition to medical treatment are urgently needed in order to avoid what has been regarded as the largest calamity of chemical poisoning in the world.
Resumo:
Low concentrations of herbicides (up to 70 ng 1(-1)), chiefly diuron (up to 50 ng 1 (-1)) were detected in surface waters associated with inter-tidal seagrass meadows of Zostera muelleri in Hervey Bay, south-cast Queensland, Australia. Diuron and atrazine (up to 1. 1 ng g(-1) dry weight of sediment) were detected in the sediments of these seagrass meadows. Concentration of the herbicides diuron, simazine and atrazine increased in surface waters associated with seagrass meadows during moderate river flow events indicating herbicides were washed from the catchment to the marine environment. Maximum herbicide concentration (sum of eight herbicides) in the Mary River during a moderate river flow event was 4260 ng 1(-1). No photosynthetic stress was detected in seagrass in this study during low river flow. However, with moderate river flow events, nearshore seagrasses are at risk of being exposed to concentrations of herbicides that are known to inhibit photosynthesis. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The Laryngeal Mask Airway is a reusable device for maintaining the patency of a patient's airway during general anaesthesia. The device can be reused after it has been cleaned and sterilized. Protein contamination of medical instruments is a concern and has been found to occur despite standard sterilization techniques. The reason for the concern relates to the possibility of the transmission of prions and the risk of developing a neurodegenerative disorder such as Creutzveldt-Jacob disease. The purpose of this study was to quantify the amount of protein contamination that occurs, and to relate this to the number of times the Laryngeal Mask Airway has been used. Fifty previously used Classic Laryngeal Masks were collected after routine sterilization and packaging. The devices were immersed in protein detecting stain and then visual inspection performed to assess the degree and distribution of the staining. The researcher was blinded to the number of times the Laryngeal Mask Airway had been used. Linear regression analysis of the degrees of staining of the airway revealed that protein contamination occurs after the first use of the device and this increases with each subsequent use. This finding highlights the concern that the currently used cleaning and sterilization methods do not prevent the accumulation of proteinaceous material on Laryngeal Mask Airways. Consideration should be given to the search for more efficient cleaning and sterilization techniques or the use of disposable devices.
Resumo:
Simulations of a complete reflected shock tunnel facility have been performed with the aim of providing a better understanding of the flow through these facilities. In particular, the analysis is focused on the premature contamination of the test flow with the driver gas. The axisymmetric simulations model the full geometry of the shock tunnel and incorporate an iris-based model of the primary diaphragm rupture mechanics, an ideal secondary diaphragm and account for turbulence in the shock tube boundary layer with the Baldwin-Lomax eddy viscosity model. Two operating conditions were examined: one resulting in an over-tailored mode of operation and the other resulting in approximately tailored operation. The accuracy of the simulations is assessed through comparison with experimental measurements of static pressure, pitot pressure and stagnation temperature. It is shown that the widely-accepted driver gas contamination mechanism in which driver gas 'jets' along the walls through action of the bifurcated foot of the reflected shock, does not directly transport the driver gas to the nozzle at these conditions. Instead, driver gas laden vortices are generated by the bifurcated reflected shock. These vortices prevent jetting of the driver gas along the walls and convect driver gas away from the shock tube wall and downstream into the nozzle. Additional vorticity generated by the interaction of the reflected shock and the contact surface enhances the process in the over-tailored case. However, the basic mechanism appears to operate in a similar way for both the over-tailored and the approximately tailored conditions.
Resumo:
The past decade has witnessed a resurgence of interest in the use of hypertonic saline for low-volume resuscitation after trauma. Preliminary studies suggested that benefits are limited to a subgroup of trauma patients with brain injury, but a recent study of prehospital administration of hypertonic saline to patients with traumatic brain injury failed to confirm a benefit. Animal and human studies have demonstrated that hypertonic saline has clinically desirable physiological effects on cerebral blood flow, intracranial pressure, and inflammatory responses in models of neurotrauma. There are few clinical studies in traumatic brain injury with patient survival as an end point. In this review, we examined the experimental and clinical knowledge of hypertonic saline as an osmotherapeutic agent in neurotrauma.
Resumo:
This article trials three conceptual frameworks on an Australian case study of a small remote city suffering lead contamination, with cumulative effects from concurrent economic change due to downsizing in the mining industry. It interprets the usefulness of these frameworks, and explores two questions: can they apply to circumstances other than project assessment, and what are their relative merits as guides to SIA? All the frameworks reviewed can be used in non-project and cumulative SIA, although, if they had been used to predict the impacts in our case study, we may easily have been misled as to the resilience of the community. Choosing among these frameworks becomes a matter personal preference: each has different merits.
Resumo:
Saline-sodic clay minespoil materials excavated during open-cut coal mining in central Queensland, Australia, pose significant challenges for revegetation, particularly where suitable topsoil capping is not available. We examined the ability of sawdust or straw mulch amendments to ameliorate the adverse properties of these minespoils and improve the success of revegetation efforts. In laboratory studies, mulch application improved infiltration, increased soil moisture retention and reduced surface crust strength. In the field, mulches incorporated to a depth of 0.15 m at application rates of at least 20 t/ha straw or 80 t/ha sawdust were needed to mitigate against capillary rise of salts during drying cycles and support satisfactory vegetation cover. Further research is needed to determine whether improvements are maintained beyond the 4-year trial period reported here.
Resumo:
The measurement of exchangeable cations in saline soils is limited by the difficulty in accurately separating soluble cations from exchangeable cations. A method is examined for saline soils in which exchangeable cations are calculated as the total extractable cations minus the concentration of soil solution (soluble) cations. In addition, a further two standard methods were investigated, one which assumes the total soil extractable cations are exchangeable, the other utilises a pretreatment to remove soluble salts prior to measurement of the remaining (exchangeable) cations. After equilibration with a range of sodium adsorption ratio (SAR) solutions at various ionic strengths, the exchangeable cation concentrations of two soils (Dermosol and Vertosol) were determined by these methods and compared to known values. The assumption that exchangeable cations can be estimated as the total soil extractable cations, although valid at low ionic strength, resulted in an overestimation of exchangeable Na and Ca concentrations at higher ionic strengths due to the presence of soluble salts. Pretreatment with ethanol and glycerol was found to effectively remove soluble salts thus allowing the accurate measurement of the effective cation exchange capacity (ECEC), however, dilution associated with the pretreatment process decreased concentrations of exchangeable Ca while simultaneously increasing exchangeable Na. Using the proposed method, good correlations were found between known and measured concentrations of exchangeable Na (Dermosol: y=0.873x and Vertosol: y=0.960x) and Ca (Dermosol: y=0.906x, and Vertosol: y=1.05x). Therefore, for soils with an ionic strength of approximately 50 mM (ECse 4 dS m-1) or greater (in which exchangeable cation concentrations are overestimated by assuming the total soil cations are exchangeable), concentrations can be calculated as difference between total extractable cations and soluble cations.
Resumo:
Land disposal is commonly used for urban and industrial wastewater, largely due to the high costs involved in alternative treatments or disposal systems. However, the viability of such systems depends on many factors, including the composition of the effluent water, soil type, the plant species grown, growth rate, and planting density. The objective of this study is to establish whether land disposal of nitrogen (N) rich effluent using an agroforestry system is sustainable, and determine the effect of irrigation rate and tree planting density on the N cycle and subsequent N removal. We examined systems for the sustainable disposal of a high strength industrial effluent. The challenge was to leach the salt, by using a sufficiently high rate of irrigation, while simultaneously ensuring that N did not leach from the soil profile. We describe the N balance for two plant systems irrigated with effluent, one comprising Eucalyptus tereticornis and Eucalyptus moluccana and a Rhodes grass (Chloris gayana) pasture, and the other, Rhodes grass pasture alone. Nitrogen balance was assessed from N inputs in effluent and rainfall, accumulation of N in the plant biomass, changes in soil N storage, N loss in run-off water, denitrification and N loss to the groundwater by deep-drainage. Biomass production was estimated from allometric relationships derived from yearly destructive harvesting of selected trees. The N content of that biomass was then calculated from measured N content of the various plant parts, and their mass. Approximately 300 kg N/ha/yr was assimilated into tree biomass at a planting density of 2500 tree/ha of E. moluccana. In addition to tree assimilation, pasture growth between the tree rows, which was regularly harvested, contributed substantially to N uptake. If the trees were harvested after two years of growth and grass harvested regularly, biomass removal of N by the mixed system would be about 700 kg N/ha/yr. The results of this study show that the current system of effluent disposal is not sustainable as the nitrate leaching from the soil profile far exceeds standards set out by the ANZECC guidelines. Hence additional means of N removal will need to be implemented. Biological N removal is an area that warrants further studies as it is aimed at reducing N levels in the effluent before irrigation. This will complement the current agroforestry system.