18 resultados para SMOOTHING SPLINE
Resumo:
A new algorithm has been developed for smoothing the surfaces in finite element formulations of contact-impact. A key feature of this method is that the smoothing is done implicitly by constructing smooth signed distance functions for the bodies. These functions are then employed for the computation of the gap and other variables needed for implementation of contact-impact. The smoothed signed distance functions are constructed by a moving least-squares approximation with a polynomial basis. Results show that when nodes are placed on a surface, the surface can be reproduced with an error of about one per cent or less with either a quadratic or a linear basis. With a quadratic basis, the method exactly reproduces a circle or a sphere even for coarse meshes. Results are presented for contact problems involving the contact of circular bodies. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
A new approach to identify multivariable Hammerstein systems is proposed in this paper. By using cardinal cubic spline functions to model the static nonlinearities, the proposed method is effective in modelling processes with hard and/or coupled nonlinearities. With an appropriate transformation, the nonlinear models are parameterized such that the nonlinear identification problem is converted into a linear one. The persistently exciting condition for the transformed input is derived to ensure the estimates are consistent with the true system. A simulation study is performed to demonstrate the effectiveness of the proposed method compared with the existing approaches based on polynomials. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Background and objectives: The greatest increase in bone mineral content occurs during adolescence. The amount of bone accrued may significantly affect bone mineral status in later life. We carried out a longitudinal investigation of the magnitude and timing of peak bone mineral content velocity (PBMCV) in relation to peak height velocity (PHV) and the age at menarche in a group of adolescent girls over a 6-year period. Methods: The 53 girls in this study are a subset of the 115 girls (initially 8 to 16 years) in a g-year longitudinal study of bone mineral accretion. The ages at PBMCV and PHV were determined by using a cubic spline curve fitting procedure. Determinations were based on height (n = 12) and bone (n = 6) measurements over 6 years. Results: The timing of PBMCV and menarche were coincident, preceded approximately 1 year earlier by PHV. Correlation showed a negative relationship between age at menarche and both peak bone mineral accrual (r = -0.42, P
Resumo:
To investigate the influence of physical activity on bone mineral accrual during the adolescent years, we analyzed 6 years of data from 53 girls and 60 boys. Physical activity, dietary intakes, and anthropometry were measured every 6 months and dual-energy X-ray absorptiometry scans of the total body (TB), lumbar spine (LS), and proximal femur (Hologic 2000, array mode) were collected annually. Distance and velocity curves for height and bone mineral content (BMC) were fitted for each child at several skeletal sites using a cubic spline procedure, from which ages at peak height velocity (PHV) and peak BMC velocity (PBMCV) were identified. A mean age- and gender-specific standardized activity (Z) score was calculated for each subject based on multiple yearly activity assessments collected up until age of PHV. This score was used to identify active (top quartile), average (middle 2 quartiles), or inactive (bottom quartile) groups. Two-way analysis of covariance, with height and weight at PHV controlled for, demonstrated significant physical activity and gender main effects (but no interaction) for PBMCV, for BMC accrued for 2 years around peak velocity, and for BMC at 1 year post-PBMCV for the TB and femoral neck and for physical activity but not gender at the LS (all p < 0.05). Controlling for maturational and size differences between groups, we noted a 9% and 17% greater TB BMC for active boys and girls, respectively, over their inactive peers 1 year after the age of PBMCV. We also estimated that, on average, 26% of adult TB bone mineral was accrued during the 2 years around PBMCV.
Resumo:
The primary purpose of this study was to estimate the magnitude and variability of peak calcium accretion rates in the skeletons of healthy white adolescents. Total-body bone mineral content (BMC) was measured annually on six occasions by dual-energy X-ray absorptiometry (DXA; Hologic 2000, array mode), a BMC velocity curve was generated for each child by a cubic spline fit, and peak accretion rates were determined. Anthropometric measures were collected every 6 months and a 24-h dietary recall was recorded two to three times per year. Of the 113 boys and 115 girls initially enrolled in the study, 60 boys and 53 girls who had peak height velocity (PHV) and peak BMC velocity values were used in this longitudinal analysis. When the individual BR IC velocity curves were aligned on the age of peak bone mineral velocity, the resulting mean peak bone mineral accrual rate was 407 g/year for boys (SD, 92 g/year; range, 226-651 g/year) and 322 g/year for girls (SD, 66 g/year; range, 194-520 g/year). Using 32.2% as the fraction of calcium in bone mineral, as determined by neutron activation analysis (Ellis et al., J Bone Miner Res 1996;11:843-848), these corresponded to peak calcium accretion rates of 359 mg/day for boys (81 mg/day; 199-574 mg/day) and 284 mg/day for girls (58 mg/day; 171-459 mg/day). These longitudinal results are 27-34% higher than our previous cross-sectional analysis in which we reported mean values of 282 mg/day for boys and 212 mg/day for girls (Martin et al., Am J Clin Nutr 1997;66:611-615). Mean age of peak calcium accretion was 14.0 years for the boys (1.0 years; 12.0-15.9 years), and 12.5 years for the girls (0.9 years; 10.5-14.6 years). Dietary calcium intake, determined as the mean of all assessments up to the age of peak accretion was 1140 mg/day (SD, 392 mg/day) for boys and 1113 mg/day (SD, 378 mg/day) for girls. We estimate that 26% of adult calcium is laid down during the 2 adolescent years of peak skeletal growth. This period of rapid growth requires high accretion rates of calcium, achieved in part by increased retention efficiency of dietary calcium.
Resumo:
To investigate whether there are gender differences in the bone geometry of the proximal femur during the adolescent years we used an interactive computer program ?Hip Strength Analysis? developed by Beck and associates (Beck et al., Invest Radiol. 1990,25:6-18.) to derive femoral neck geometry parameters from DXA bone scans (Hologic 2000, array mode). We analyzed a longitudinal data-set collected on 70 boys and 68 girls over a seven year period. Distance and velocity curves for height were fitted for each child utilizing a cubic spline procedure and the age of peak height velocity (PHV) was determined. To control for maturational differences between children of the same chronological age and between boys and girls, section modulus (Z) an index of bending strength, cross sectional area of bone (CSA), sub-periosteal width (SPW), and BMD values at the neck and shaft of the proximal femur were determined for points on each individual?s curve at the age of PHV and one and two years on either side of peak. To control for size differences, height and weight were introduced as co-variates in the two-way analyses of variance looking at gender over time measured at the maturational age points (-2, -1, age of PHV, +1, +2). The following figure presents the results of the analyses on two variables, BMD and Z at neck and shaft regions:After the age of peak linear growth (PHV), independent of body size, there was a gender difference in BMD at the shaft but not at the neck. Section modulus at both sites indicated that male bones became significantly stronger after PHV. Underlying these maturational changes, male bones became wider (SPW) after PHV in both the neck and shaft and enclosed more material (CSA) at all maturational age points at both regions. These results call into question the emphasis on using BMD as a measure of skeletal integrity in growing children
Gender differences in the relationship between depression and suicidal ideation in young adolescents
Resumo:
Objective: This study examined the risk relationship between depressive symptomatology and suicidal ideation for young adolescent males and females. Method: A large cohort of students in their first year of high school completed the Center for Epidemiological Studies Depression Scale (CES-D) and the Adolescent Suicide Questionnaire. The risk relationship between depressive symptomatology and suicidal ideation was modelled using non-parametric kernel-smoothing techniques. Results: Suicidal ideation was more frequently reported by females compared with males which was partly explained by females having higher mean depression scores. At moderate levels of depression females also had a significantly higher risk of suicidal ideation compared with males and this increased risk contributed to the overall higher levels of female ideation. Conclusions: The risk relationship between depressive symptomatology and suicidal ideation is different for young adolescent males and females. The results indicate that moderate levels of depressive symptomatology can be associated with suicidal ideation (especially among young females) and that for these young people a suicide risk assessment is required.
Resumo:
Smoothing the potential energy surface for structure optimization is a general and commonly applied strategy. We propose a combination of soft-core potential energy functions and a variation of the diffusion equation method to smooth potential energy surfaces, which is applicable to complex systems such as protein structures; The performance of the method was demonstrated by comparison with simulated annealing using the refinement of the undecapeptide Cyclosporin A as a test case. Simulations were repeated many times using different initial conditions and structures since the methods are heuristic and results are only meaningful in a statistical sense.
Resumo:
Height, weight, and tissue accrual were determined in 60 male and 53 female adolescents measured annually over six years using standard anthropometry and dual-energy X-ray absorptiometry (DXA). Annual velocities were derived, and the ages and magnitudes of peak height and peak tissue velocities were determined using a cubic spline fit to individual data. Individuals were rank ordered on the basis of sex and age at peak height velocity (PHV) and then divided into quartiles: early (lowest quartile), average (middle two quartiles), and late (highest quartile) maturers. Sex- and maturity-related comparisons in ages and magnitudes of peak height and peak tissue velocities were made. Males reached peak velocities significantly later than females for all tissues and had significantly greater magnitudes at peak. The age at PHV was negatively correlated with the magnitude of PHV in both sexes. At a similar maturity point (age at PHV) there were no differences in weight or fat mass among maturity groups in both sexes. Late maturing males, however, accrued more bone mineral and lean mass and were taller at the age of PHV compared to early maturers. Thus, maturational status (early, average, or late maturity) as indicated by age at PHV is inversely related to the magnitude and late maturers for weight and fat mass in boys and girls. Am. J. Hum. Biol. 13:1-8, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
Orebody modelling, support effects and the estimation of recoverable reserves are key parts of open pit optimization studies. A case study is presented on the estimation of recoverable reserves using an implementation of indicator kriging where metal quantity is used to select cutoffs, and support corrections founded on a conditional simulation approach. Mining selectivity is explored in the subsequent optimization study to compare results from indicator kriging of grade estimates on a regular size blocks and indicator kriging estimates on small size blocks. The use of indicator kriging models adjusted for a given selectivity and the use of grade proportions in each block for the optimization study, provide a presentation of the expected ore recovery for a predefined level of selectivity. The case study shows that indicator kriging estimation with full accounting of block grade distributions generates substantially better results in the pit optimization study. In addition, the adverse effects of small blocks and over-smoothing on optimization results are illustrated.